# Triterpenoid Total Synthesis. Part 3.1 Synthesis of meso- and ( $\pm$ )-Limatulone, Defensive Metabolites of the Limpet Collisella limatula 

Kenji Mori, *, ${ }^{\text {a }}$ Hirosato Takikawa ${ }^{a}$ and Masaru Kido ${ }^{\boldsymbol{b}}$<br>${ }^{\text {a }}$ Department of Agricultural Chemistry, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan<br>${ }^{\text {b }}$ Second Tokushima Institute of New Drug Research, Otsuka Pharmaceutical Co., Ltd., Kawauchi, Tokushima 770-01, Japan


#### Abstract

A total synthesis of both meso- and ( $\pm$ )-limatulone ( $\mathbf{1} \mathbf{a}$ and $\mathbf{1 b}$ ), the defensive triterpene metabolites of the limpet Collisella limatula, was achieved by starting from ethyl 2-oxocyclohexane-1-carboxylate 2. The key feature of the present synthesis was the separation of the meso-diol 13a and the ( $\pm$ )diol 13b. An X-ray crystallographic analysis of the former compound (meso-13a) established its structure. The limpet Collisella limatula was found to produce both meso- and ( $\pm$ )-limatulone (1a and 1b) as defensive metabolites.


In 1985, Faulkner and his co-workers isolated limatulone from the intertidal limpet Collisella limatula as a feeding inhibitor against fish and crab. ${ }^{2}$ Indeed, it is the most potent fishfeeding inhibitor and is about an order of magnitude more effective than polygodial, the well known antifeedant. Food pellets containing limatulone at the level of $0.05 \%$ dry weight or more induces regurgitation in the intertidal fish Gibbonsia elegans, a known limpet predator.

As depicted in structures $\mathbf{1 a}$ and $\mathbf{1 b}$, limatulone is a structurally unusual triterpene, consisting of two identical $\mathrm{C}_{15}$ units. This unique structure caused a problem during structure determination. Namely, it is still unknown whether the natural and optically inactive limatulone is meso-1a or $( \pm)-\mathbf{1 b}$. Its biosynthetic pathway is also puzzling. While the usual polycyclic triterpenes arise from cyclisation of 2,3-epoxysqualene, limatulone is not derived from it. Only very recently, in 1991, two similar triterpenes named naurol A and B were isolated and identified from a Pacific sponge by Schmitz and his co-workers. ${ }^{3}$

Since limatulone is such an interesting marine triterpene with regard to its structure, activity and biosynthesis, we became interested in synthesizing both isomers 1a and 1 b to confirm the proposed structure. Herein we describe our synthesis in detail, which has already been published as a preliminary communication. ${ }^{4}$

## Results and Discussion

Synthetic Plan.-Our synthetic plan for limatulone is shown in Scheme 1. We assumed that meso- and ( $\pm$ )-compounds such as $\mathbf{A}$ and $\mathbf{A}^{\prime}$ may be separable at a certain stage of the synthesis. Intermediates like meso-A and ( $\pm$ )- $\mathbf{A}^{\prime}$ will readily be generated by dimerisation or its equivalent operation of the racemic key intermediate $( \pm)$-B. This route is simpler and more efficient than other routes that employ optically active intermediates.

The intermediates $( \pm)$-B may be prepared from the known $\beta$-keto ester $\mathbf{D}(=2)$ via the lactone $\mathbf{C}$, which possesses all of the necessary structural features in the cyclic moieties of limatulone. Since the conversion of meso-A and $( \pm)-\mathbf{A}^{\prime}$ into meso-1a and ( $\pm$ )-1b may not be so difficult, the high efficiency of the separation of isomers $\mathbf{A}$ and $\mathbf{A}^{\prime}$ will be the key to the success of the synthesis. This plan was realized as follows.

Preparation of the Key Intermediates Corresponding to $( \pm)$ B. -The key intermediates $( \pm)-10$ and $( \pm)-11$ corresponding to $( \pm)$-B were prepared as shown in Scheme 2. The synthesis started from ethyl 2-oxocyclohexane-1-carboxylate 2 , which was converted into the ketone $( \pm)-3$ by a known procedure in $78 \%$ overall yield after 4 steps. ${ }^{5}$ The carbanion derived from
ketone ( $\pm$ )-3 by treatment with lithium diisopropylamide (LDA) was alkylated with ethyl bromoacetate to give a stereoisomeric mixture of the keto ester ( $\pm$ )-4a in $88 \%$ yield based on the consumed substrate ( $\pm$ )-3. Alkaline hydrolysis of ester $( \pm)-4 a$ with lithium hydroxide in aqueous tetrahydrofuran (THF) yielded the corresponding acid ( $\pm$ )-4b, which was heated with acetic anhydride and sodium acetate to give a stereoisomeric mixture of the $\alpha, \beta$-unsaturated lactones $( \pm)-5 a$ and $( \pm)-5 b$.

Separation of these two diastereoisomeric lactones was achieved by silica gel $\left(\mathrm{SiO}_{2}\right)$ column chromatography followed by recrystallisation to furnish the more polar isomer [ $33 \%$ from ( $\pm$ )-4a] and the less polar isomer [ $45 \%$ from ( $\pm$ )-4a], respectively. Assignment of the relative stereochemistry as depicted in structure $( \pm)-5 a$ to the more polar isomer and $( \pm)$ 5b to the less polar one was based on ${ }^{1} \mathrm{H}$ NMR analysis as follows. The methyl group at $\mathrm{C}-7$ of the more polar isomer absorbed at $\delta 1.20(3 \mathrm{H}, \mathrm{s})$, while the signal due to that of the less polar isomer appeared at $\delta 0.63(3 \mathrm{H}$, s). The methyl group attached to the silicon atom of the tert-butyldimethylsilyl (TBDMS) protective group of the more polar isomer absorbed at $\delta-0.02(3 \mathrm{H}, \mathrm{s})$ and $0.00(3 \mathrm{H}, \mathrm{s})$, while a 6 H singlet signal due to those methyl groups of the less polar isomer appeared at $\delta 0.08$. Inspection of the molecular models indicated that the shielding effect due to the lactone moiety must cause the highfield shift of the signal due to the methy group at $\mathrm{C}-7$ of compound $( \pm)-5 b$ and also that due to the dimethylsilyl group of stereoisomer $( \pm)-5 \mathbf{a}$. The more polar isomer must therefore be compound ( $\pm$ )-5a with an equatorially oriented methyl group at $\mathrm{C}-7$, while the less polar one must be its isomer ( $\pm$ )- $\mathbf{5 b}$ with an axially oriented one. Accordingly, the more polar isomer was the desired isomer $( \pm)-5 a$ with the same relative stereochemistry as that of model $\mathbf{C}$. The useless isomer $( \pm)-\mathbf{5 b}$ could give back a mixture of isomers ( $\pm$ )-5a and ( $\pm$ )-5b by a hydrolysis-lactonisation protocol as discussed above $[( \pm)$ $\mathbf{4 a} \longrightarrow( \pm) \mathbf{- 4 b} \longrightarrow( \pm)-5 \mathbf{a}+( \pm)-\mathbf{5 b}]$, improving the total yield of lactone $( \pm)-5 a$ up to $44 \%$ from ester ( $\pm$ )-4a.

The next and seemingly easy step of the reduction of lactone $( \pm)-5 a$ to allylic diol $( \pm)-6$ turned out to be a problematic one. At first, attempts were made to reduce lactone ( $\pm$ )-5a with conventional hydride reducing reagents such as lithium aluminium hydride, diisobutylaluminium hydride, lithium borohydride, lithium triethylborohydride, etc. None of them, however, gave satisfactory results. Even calcium borohydride, ${ }^{6}$ which was successfully employed in the case of glycinoeclepin A synthesis for the reduction of a similar $\alpha, \beta$-unsaturated lactone system, ${ }^{1}$ did not work as we expected, but reduced lactone $( \pm)$ 5 5 to a saturated diol by 1,4 -reduction followed by 1,2-


（土）－Limatulone 1b

meso－A

（土）－B


Naurol A



（ $\pm$ ）$-A^{\prime}$

（土）－C


D（ $=2$ ）


Naurol B

Scheme 1 Structures of meso－and（ $\pm$ ）－limatulone，and synthetic plan
reduction．Finally，reduction with Kollonitsch＇s calcium boro－ hydride－THF complex $\left[\mathrm{Ca}\left(\mathrm{BH}_{4}\right)_{2} \cdot(\mathrm{THF})_{x}\right]^{7}$ in isopropyl alcohol at room temperature was found to give the best results． Under these conditions，lactone（ $\pm$ ）－5a gave the diol（ $\pm$ ）－6 in $99 \%$ yield with no appreciable side reaction．

The remaining steps to target intermediates $( \pm)$－ 10 and $( \pm)$－ 11 were selective protection－deprotection of the hydroxy groups and functional group－transformation reactions．The primary hydroxy group of diol $( \pm)-6$ was protected selectively as its pivalate in the conventional manner to give compound $( \pm)-7$ in $96 \%$ yield．Protection of the remaining hydroxy group of ester $( \pm)-7$ as the 1－ethoxyethoxy（EE）ether gave compound （ $\pm$ ）－8 in $91 \%$ yield．Removal of the pivaloyl group of the fully protected compound（ $\pm$ ）－8 by treatment with methyllithium furnished the allylic alcohol（ $\pm$ ）－9 in $97 \%$ yield．For the coupling or so－called dimerisation of two $\mathrm{C}_{15}$ intermediates，the phenylsulfone alkylation－desulfonylation strategy was selected as the method of choice（ $c f$ ．ref．8）．To execute the coupling reaction，the allylic bromide $( \pm)-10$ and the allylic sulfone $( \pm)$－ 11 were envisaged as the partners corresponding to the key intermediates $\mathbf{B}$ in the synthetic plan．Accordingly，the alcohol $( \pm)-9$ was converted into the bromide（ $\pm$ ）－10 in quantitative yield under Stork conditions．${ }^{9}$ Treatment of compound $( \pm)-10$ with sodium phenylsulfinate in $N, N$－dimethylformamide
（DMF）afforded sulfone（ $\pm$ ）－11 in $78 \%$ yield from the consumed alcohol $( \pm)-9$ ．The stage was thus set for the key coupling and separation steps．

Coupling of the Key Intermediates Corresponding to（ $\pm$ ）－B and the Separation of the Resulting Stereoisomers A and $\mathbf{A}^{\prime}$ ．－ Scheme 3 shows the pivotal part of the present synthesis：the coupling of the key intermediates $( \pm)-10$ and $( \pm)-11$ and the separation of products meso－13a and $( \pm)-13 \mathrm{~b}$ ．The carbanion generated from compound $( \pm)-11$ by treatment with butyl－ lithium（BuLi）was alkylated with compound（ $\pm$ ）－10 to give a complex mixture，which was desulfonylated immediately with sodium amalgam．${ }^{8}$ This reductive desulfonylation furnished a moderate yield［ $23 \%$ from（ $\pm$ ）－11］of an inseparable mixture of the desired coupling products 12 a and 12 b ．The observed unsatisfactory yield was due to the side reactions such as reductive elimination of 1 －ethoxyethoxy group（s）as caused by sodium amalgam．

The next problem was the separation of products．Since the presence of the two EE protective groups in both compounds 12a and $\mathbf{1 2 b}$ complicated the separation due to the stereo－ isomerism inherent to the EE groups，we attempted to remove them selectively．However，under conventional conditions of deprotection such as treatment with pyridinium toluene－p－


Scheme 2 Synthesis of the key intermediates ( $\pm$ )-10 and ( $\pm$ )-11. Reagents, conditions and yields: (a) LDA, THF; then $\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{Et}(88 \%$ ); (b) LiOH , aq. THF- MeOH (quant.); (c) $\mathrm{NaOAc}, \mathrm{Ac}_{2} \mathrm{O}$, heat ( $33 \%$ of 5 a and $42 \%$ of $5 \mathbf{5} ; 23 \%$ conversion of 5 b into $5 \mathrm{5a}$ ); (d) $\mathrm{Ca}\left(\mathrm{BH}_{4}\right)_{2} \cdot\left(\mathrm{THF}_{x}, \mathrm{Pr}{ }^{\mathrm{i}} \mathrm{OH}\right.$ ( $99 \%$ ); (e) $\mathrm{Bu}^{\prime} \mathrm{COCl}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ ( $96 \%$ ); (f) $\mathrm{CH}_{2}=\mathrm{CHOEt}$, $p-\mathrm{TsOH}$ ( $91 \%$ ); (g) MeLi, $\mathrm{Et}_{2} \mathrm{O}$ ( $97 \%$ ); (h) (i) BuLi, $\mathrm{Et}_{2} \mathrm{O}-\mathrm{HMPA}$; then $p-\mathrm{TsCl}$; (ii) LiBr (quant.); (i) $\mathrm{PhSO}_{2} \mathrm{Na}, \mathrm{NaHCO} 3, \mathrm{DMF}(78 \%$ )


Scheme 3 Synthesis of compounds 13a and 13b. Reagents, conditions and yields: (a) BuLi, THF-HMPA; (b) $\mathrm{Na}-\mathrm{Hg}, \mathrm{Na}_{2} \mathrm{HPO}, \mathrm{THF}-\mathrm{MeOH}(23 \%$ from 11); (c) PPTS, MeOH; (d) TBDMSCl, DMAP, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( $34 \%$ of 13 a and $28 \%$ of 13 b in 2 steps)



Fig. 1 X-Ray molecular structure of meso-13a
sulfonate (PPTS) in methanol, acetic acid in aqueous THF or magnesium bromide in diethyl ether, not only the EE but the TBDMS groups were also removed. Our choice was therefore to make a detour: namely, total deprotection and subsequent selective reprotection. After removal of both EE and TBDMS groups of compounds $\mathbf{1 2 a}$ and $\mathbf{1 2 b}$ with PPTS in methanol, the primary hydroxy groups were reprotected as TBMDS ethers to give a mixture of meso-13a $(=A)$ and $( \pm)-13 b\left(=A^{\prime}\right)$. To our pleasure, these were separable by $\mathrm{SiO}_{2}$ column chromatography and recrystallisation to give the less polar isomer in $28 \%$ yield and the more polar isomer in $34 \%$ yield, respectively. Both of the isomers were secured pure, as judged by their IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. Nevertheless, it was impossible to decide
which was meso and which was racemic. Fortunately, the more polar isomer could be obtained as colourless rods, m.p. 95$97^{\circ} \mathrm{C}$, suitable for the X-ray diffraction study. The result of an X-ray analysis clearly indicated the polar isomer to be meso13a, whose perspective view is shown in Fig. I. This concluded the most difficult stage of the present synthesis.

Completion of the Synthesis of meso- and $( \pm)$-Limatulone.Conversion of meso-13a into meso-1a is shown in Scheme 4. The required elongation of the side-chains was executed in such a stepwise manner as to introduce two $\mathrm{C}_{1}$-units first and then two $\mathrm{C}_{4}$-units. The reason why we adopted the stepwise approach was the difficulty associated with $\mathrm{C}_{5}$-elongation by using an


18a R=EE
1a $R=H$

Scheme 4 Synthesis of meso- and ( $\pm$ )-limatulone. Reagents, conditions and yields: (a) $\mathrm{CH}_{2}=\mathrm{CHOEt}, p-\mathrm{TsOH}(98 \%$ ); (b) TBAF, THF (quant); (c) DMSO $,(\mathrm{COCl})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$ (quant. for 15 a and $90 \%$ for 18a); (d) $\mathrm{ClCH}_{2} \mathrm{Li}$, THF ( $95 \%$ from 14 a ); (e) $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CHMgBr}, \mathrm{CuI}$, THF ( $98 \%$ ); (f) AcOH MeOH -water ( $49 \%$ )
isoprenyl organometallic reagent. Generally, the coupling or addition reaction with allylic organometallic reagents is known to result in ambiguous regiochemistry of $\alpha$-attack versus $\gamma$-attack. The stepwise approach does not suffer from such an ambiguity.

Protection of the secondary hydroxy groups of meso-13a as EE ethers gave the fully protected compound $\mathbf{1 2 a}$ in $98 \%$ yield, which was desilylated with tetrabutylammonium fluoride (TBAF) to furnish the diol 14 a in quantitative yield. Swern oxidation ${ }^{16}$ of compound 14 a yielded unstable dialdehyde 15 a , which was immediately treated with (chloromethyl)lithium ${ }^{11}$ to give bis-epoxide 16a in $95 \%$ yield from diol 14a. The unknown relative stereochemistry of the epoxy moieties of the product 16a was of no concern, because these two epoxy chiral centres of compound 16a would disappear at a later stage ( $17 \mathbf{a} \longrightarrow \mathbf{1 8 a}$ ). 2-Methylprop-1-enylmagnesium bromide in the presence of copper( I ) iodide then opened up the epoxy rings of compound 16a to afford the diol 17 a in $98 \%$ yield. The total carbon framework of limatulone was thus assembled successfully.

Oxidation of diol 17a under the Swern condition gave a diketone 18 a in $90 \%$ yield. Finally, removal of the EE protective groups of dione 18a furnished meso-limatulone 1a as an oil in $49^{\circ} \%$ yield. The overall yield of compound $\mathbf{1 a}$ was $0.62 \%$ in 24 steps from keto ester 2. Similarly, ( $\pm$ )-13b was converted into $( \pm)$-limatulone $1 \mathbf{b}$ in $0.39 \%$ overall yield based on initial keto ester $\mathbf{2}$ in 24 steps.

Determination of the Structures of Natural Limatulone and Biogenetic Implications Thereof.-The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR
spectra of our synthetic limatulone $\mathbf{1 a}$ and $\mathbf{1 b}$ were very similar but slightly different from each other. Fig. 2 shows the ${ }^{1} \mathrm{H}$ NMR spectra of both compounds $\mathbf{1 a}$ and $\mathbf{1 b}$. These spectra were then compared with the authentic spectra of natural limatulone kindly provided by Prof. D. J. Faulkner. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the previously reported limatulone ${ }^{2}$ were identical with those of $( \pm)$-limatulone 1 bb . Therefore, the natural limatulone reported in $1985^{2}$ was the racemate 1b. To our surprise, however, the ${ }^{1} \mathrm{H}$ NMR spectrum of another fraction from the HPLC separation of Collisella limatula metabolite coincided with that of meso-limatulone 1a. The presence of this fraction was not reported in the isolation paper, ${ }^{2}$ but Prof. Faulkner kindly provided us with a copy of the $360 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of that fraction. It is now clear that the limpet Collisella limatula produces both meso-1a and $( \pm)-1 \mathbf{b}$.

In conclusion, meso-limatulone 1a and ( $\pm$ )-limatulone 1b were synthesized, and both were shown to be naturally occurring metabolites. This indicates the presence of a nonstereoselective biosynthetic pathway leading to limatulone, a triterpene with four chiral centres. The mechanism by which the limpet biosynthesizes the three stereoisomers [meso-1a, $(+)-\mathbf{1 b}$, and $(-)-\mathbf{1 b}]$ simultaneously must await further investigation.

## Experimental

All m.p.s were measured on a Yanaco micro melting point apparatus and are uncorrected. IR spectra were measured as films for oils or as Nujol mulls, KBr disks and solutions (in


Fig. $2{ }^{1} \mathrm{H}$ NMR spectra of: (a) meso-limatulone 1a; (b) ( $\pm$ )limatulone 1b ( $300 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$ )
$\mathrm{CCl}_{4}$ ) for solids on a JASCO IRA-102 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 90 MHz on a JEOL EX- 90 spectrometer or at 300 MHz on a Bruker AC- 300 spectrometer. The peak for $\mathrm{SiMe}_{4}$ or solvent ( $\mathrm{CHCl}_{3}: \delta 7.26, \mathrm{C}_{6} \mathrm{H}_{6}: \delta 7.15$ ) was used for the internal standard. $J$-Values are given in $\mathrm{Hz} .{ }^{13} \mathrm{C}$ NMR spectra were recorded at 22.4 MHz on a JEOL EX-90 spectrometer or at 75 MHz on a Bruker AC-300 spectrometer. Solvent peak ( $\left.\mathrm{CDCl}_{3}: \delta_{\mathrm{C}} 77.0, \mathrm{C}_{6} \mathrm{D}_{6}: \delta_{\mathrm{C}} 128.0\right)$ was used for the internal standard. Refractive indexes were measured on an ATAGO Abbe refractometer 1 T .

Ethyl [3-(tert-Butyldimethylsiloxymethyl)-3-methyl-2-oxocyclohexyl]acetate 4a.-LDA was prepared from diisopropylamine ( $20.0 \mathrm{~cm}^{3}, 143 \mathrm{mmol}$ ) and $\mathrm{BuLi}\left(1.66 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in hexane, $\left.82.0 \mathrm{~cm}^{3}, 136 \mathrm{mmol}\right)$ in dry THF ( $100 \mathrm{~cm}^{3}$ ) under Ar. A solution of ketone $3(32.9 \mathrm{~g}, 130 \mathrm{mmol})$ in dry THF ( $120 \mathrm{~cm}^{3}$ ) was then added dropwise to the LDA solution at $-60^{\circ} \mathrm{C}$, and this stirred mixture was allowed to warm to $-20^{\circ} \mathrm{C}$ during 1 h . After the mixture had been recooled to $-60^{\circ} \mathrm{C}$, a solution of ethyl bromoacetate ( $15.9 \mathrm{~cm}^{3}, 143 \mathrm{mmol}$ ) in dry THF ( $30 \mathrm{~cm}^{3}$ ) was added dropwise. After the mixture had been stirred for 15 min at $-60^{\circ} \mathrm{C}$, the cooling-bath was removed, and the mixture was stirred overnight. The reaction mixture was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with diethyl ether. The extract was washed successively with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed over $\mathrm{SiO}_{2}$ to give 3.76 g of
recovered substrate $\mathbf{3}(3.76 \mathrm{~g}, 11.4 \%)$ and the title compound $\mathbf{4 a}$ ( $34.4 \mathrm{~g}, 88 \%$ from consumed 3) (Found: C, 63.4; H, 10.0. $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}$ requires C, $63.11 ; \mathrm{H}, 10.00 \%$ ); $n_{\mathrm{D}}^{22} 1.4575 ; v_{\text {max }}-$ (film)/ $\mathrm{cm}^{-1} 2940 \mathrm{~s}(\mathrm{C}-\mathrm{H}), 2860 \mathrm{~s}(\mathrm{C}-\mathrm{H}), 1730 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1705 \mathrm{~s}$ ( $\mathrm{C}=\mathrm{O}$ ), 1250s (TBDMS), 1180s, 1100s, 840s and 780s; $\delta_{\mathrm{H}}(90$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.03(6 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}), 0.87\left(9 \mathrm{H}, \mathrm{s} \mathrm{Bu}{ }^{t}\right), 1.03$ and 1.19 (total $3 \mathrm{H}, 2 \mathrm{~s}, 3-\mathrm{Me}$ ), 1.25 ( $3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$ ), 1.2-2.3 ( $8 \mathrm{H}, \mathrm{m}, 4-, 5-\mathrm{and} 6-\mathrm{H}_{2}$ and $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 2.6-3.3(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$, $3.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}_{2} \mathrm{OTBDMS}\right)$ and $4.12\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{Me}\right)$.

7-(tert-Butyldimethylsiloxymethyl)-4,5,6,7-tetrahydro-7-methylbenzofuran-2(7aH)-one: (7R*,7aR*)-Isomer 5 a and ( $7 \mathrm{R}^{*}$,$7 \mathrm{aS} *)$-Isomer 5 b .-To a stirred solution of ester $\mathbf{4 a}(27.9 \mathrm{~g}, 81.9$ $\mathrm{mmol})$ in THF ( $150 \mathrm{~cm}^{3}$ )-MeOH ( $80 \mathrm{~cm}^{3}$ ) was added aq. LiOH ( $1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 86 \mathrm{~cm}^{3}, 86 \mathrm{mmol}$ ) at room temperature. After being stirred overnight, this mixture was concentrated under reduced pressure to half-volume, acidified with $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ aq. to pH 3 , and extracted with diethyl ether. The extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure to give acid $\mathbf{4 b}\left(25.6 \mathrm{~g}\right.$, quant.), $v_{\text {max }}($ film $)$ / $\mathrm{cm}^{-1} 1700\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{H}\right)$. This compound was employed for the next step without further purification.

A mixture of acid $4 \mathrm{~b}(25.6 \mathrm{~g})$ and sodium acetate $(11.0 \mathrm{~g}, 134$ mmol ) in acetic anhydride ( $400 \mathrm{~cm}^{3}$ ) was stirred and heated under reflux for 40 min . After cooling, the mixture was diluted with diethyl ether, filtered to remove NaOAc , and concentrated under reduced pressure. The residue was diluted with diethyl ether and water, neutralised with saturated aq. $\mathrm{NaHCO}_{3}$, extracted with diethyl ether, and the extract was concentrated under reduced pressure. The residue was chromatographed over $\mathrm{SiO}_{2}$ to give compound $5 \mathrm{a}(9.48 \mathrm{~g}, 39 \%$ ) and compound 5b ( $11.0 \mathrm{~g}, 45 \%$ ).
(a) $\left(7 \mathrm{R}^{*}, 7 \mathrm{aR}^{*}\right)$-Isomer 5 a . Chromatographed product 5 a was further purified by recrystallisation from hexane to give a crop ( $7.86 \mathrm{~g}, 33 \%$ ) of pure lactone 5 a as needles, m.p. $84-85^{\circ} \mathrm{C}$ (Found: C, 64.8; H, 9.5. $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 64.82 ; \mathrm{H}$, $9.52 \%$ ); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1790 \mathrm{~m}(\mathrm{C}=\mathrm{O}), 1770 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1650 \mathrm{~m}$ ( $\mathrm{C}=\mathrm{C}$ ) $, 1460 \mathrm{~m}, 1255 \mathrm{~m}$ (TBDMS), $1105 \mathrm{~s}, 860 \mathrm{~s}$ and $840 \mathrm{~s} ; \delta_{\mathrm{H}}(90$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}), 0.00(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}), 0.87$ ( $9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}$ ), $1.20(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{Me}), 1.4-2.5\left(5 \mathrm{H}, \mathrm{m}, 5-\mathrm{and} 6-\mathrm{H}_{2}\right.$ and $\left.4-\mathrm{H}_{\mathrm{ax}}\right), 2.7-3.0\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{eq}}\right), 3.35\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OTBDMS}\right)$, $4.60(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 7 \mathrm{a}-\mathrm{H})$ and $5.71(1 \mathrm{H}, \mathrm{brt}, J 2,3-\mathrm{H})$.
(b) ( $7 \mathrm{R}^{*}, 7 \mathrm{aS} \mathrm{S}^{*}$ )-Isomer 5b. An analytical sample was obtained by recrystallisation from hexane to give pure lactone $\mathbf{5 b}$ as prisms, m.p. $75-76^{\circ} \mathrm{C}$ (Found: C, $64.9 ; \mathrm{H}, 9.5 \%$ ); $v_{\max }\left(\mathrm{CCl}_{4}\right) /$ $\mathrm{cm}^{-1} 1790 \mathrm{~m}(\mathrm{C}=0), 1765 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1650 \mathrm{~m}(\mathrm{C}=\mathrm{C}), 1470 \mathrm{~m}, 1255 \mathrm{~m}$ (TBDMS), $1100 \mathrm{~s}, 1090 \mathrm{~s}$ and $840 \mathrm{br} \mathrm{s} ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.08$ ( $6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}$ ), 0.63 ( $3 \mathrm{H}, \mathrm{s}, 7-\mathrm{Me}$ ), 0.91 ( $9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}$ ), $1.2-2.4$ ( $5 \mathrm{H}, \mathrm{m}, 5-\mathrm{and} 6-\mathrm{H}_{2}$ and $4-\mathrm{H}_{\mathrm{ax}}$ ), 2.7-3.0 ( $1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{eq}}$ ), 3.31 ( $1 \mathrm{H}, \mathrm{d}, J 10$, CHHOTBS), 3.68 ( $1 \mathrm{H}, J 10$, CHHOTBDMS), $4.93(1 \mathrm{H}$, br s, $7 \mathrm{a}-\mathrm{H})$ and $5.71(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 2,3-\mathrm{H})$.

Isomerisation of $\mathbf{5 b}$ to $\mathbf{5 a}$.-In the same manner as described for the preparation of acid $\mathbf{4 b}$ and the mixture of epimers 5 a and $\mathbf{5 b}$, compound $\mathbf{5 b}$ ( $21.3 \mathrm{~g}, 72.0 \mathrm{mmol}$ ) was converted into acid $\mathbf{4 b}$, which was then converted into the epimeric mixture $\mathbf{5 a}+\mathbf{5 b}$. It was subsequently purified by chromatography and recrystallisation to give epimer $5 \mathrm{a}(\mathbf{4 . 9 0} \mathrm{g}, 23 \%$ ) (crystals) and epimer 5 b ( $10.9 \mathrm{~g}, 51 \%$ ) (crude solid).
(1R*,2R*)-2-(tert-Butyldimethylsiloxymethyl)-6-[(Z)-2'-hyd-roxyethylidene]-2-methylcyclohexanol 6.-A mixture of calcium chloride ( $28.0 \mathrm{~g}, 252 \mathrm{mmol}$ ) and sodium borohydride $(16.8 \mathrm{~g}$, 444 mmol ) in dry THF ( $500 \mathrm{~cm}^{3}$ ) was stirred at room temperature overnight. The suspension was centrifuged ( 2000 $\mathrm{rpm} ; 20 \mathrm{~min}$ ) and the supernatant was concentrated under reduced pressure to give $\mathrm{Ca}\left(\mathrm{BH}_{4}\right)_{2} \cdot(\mathrm{THF})_{x}$ as a solid ( 30.6 g ). To a stirred solution of lactone $5 \mathrm{a}(6.51 \mathrm{~g}, 22.0 \mathrm{mmol})$ in $\mathrm{Pr}^{\mathrm{i}} \mathrm{OH}$
$\left(320 \mathrm{~cm}^{3}\right)$ was added $\mathrm{Ca}\left(\mathrm{BH}_{4}\right)_{2} \cdot(\mathrm{THF})_{x}(9.37 \mathrm{~g}, \sim 68 \mathrm{mmol}$ based on $\mathrm{NaBH}_{4}$ ) portionwise at room temperature. After the mixture had been stirred overnight, it was then poured into water and extracted with diethyl ether. The extract was washed successively with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed over $\mathrm{SiO}_{2}$ to give the diol $6(6.53 \mathrm{~g}, 99 \%), n_{\mathrm{D}}^{21} 1.4813$ (Found: $\mathrm{C}, 63.7 ; \mathrm{H}, 10.7 . \mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 63.95 ; \mathrm{H}$, $10.73 \%$ ); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3400 \mathrm{~s},(\mathrm{OH}), 1250 \mathrm{~s}$ (TBDMS), 1090 s , 835 s and $775 \mathrm{~s} ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.10\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.75$ ( $3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$ ), $0.92\left(9 \mathrm{H}, \mathrm{Bu}^{t}\right), 1.0-2.7\left(7 \mathrm{H}, \mathrm{m}, 3-, 4-\mathrm{and} 5-\mathrm{H}_{2}\right.$ and $\left.2^{\prime}-\mathrm{OH}\right), 3.59\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right.$ OTBDMS $), 4.05-4.45(4 \mathrm{H}, \mathrm{m}$, $1-\mathrm{H}, 2^{\prime}-\mathrm{H}_{2}$ and $\left.1-\mathrm{OH}\right)$ and $5.59\left(1 \mathrm{H}\right.$, br $\left.\mathrm{t}, J 8,1^{\prime}-\mathrm{H}\right)$.
( $\mathrm{RR}^{*}, 2 \mathrm{R}^{*}$ )-2-(tert-Butyldimethylsiloxymethyl)-2-methyl-6-[(Z)-2'-pivaloyloxyethylidene]cyclohexanol 7.-To a stirred and ice-cooled solution of diol $6(6.52 \mathrm{~g}, 21.7 \mathrm{mmol})$ in pyridine ( 30 $\mathrm{cm}^{3}$ ) was added pivaloyl chloride ( $3.2 \mathrm{~cm}^{3}, 26 \mathrm{mmol}$ ). The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$, diluted with water, and extracted with diethyl ether. The extract was washed successively with saturated aq. $\mathrm{CuSO}_{4}$, water, saturated aq. $\mathrm{NaHCO}_{3}$, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed over $\mathrm{SiO}_{2}$ to give the alcohol $7(8.04 \mathrm{~g}, 96 \%), n_{\mathrm{D}}^{21} 1.4678$ (Found: C, $65.6 ; \mathrm{H}, 10.4$. $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}$ requires $\mathrm{C}, 65.58 ; \mathrm{H}, 10.48 \%$ ); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $3470 \mathrm{~m}(\mathrm{OH}), 1725 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1660 \mathrm{w}, 1250 \mathrm{~s}(\mathrm{TBDMS}), 1150 \mathrm{~s}$, $1095 \mathrm{~s}, 835 \mathrm{~s}$ and $775 \mathrm{~s} ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.10(6 \mathrm{H}, \mathrm{s}$, $\left.\left.\mathrm{Me}_{2} \mathrm{Si}\right), 0.70(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 0.92(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu})^{t}\right), 1.19(9 \mathrm{H}, \mathrm{s}$, $\mathrm{COBu}^{t}$ ), 1.0-2.7 ( $6 \mathrm{H}, \mathrm{m}, 3-, 4-$ and $5-\mathrm{H}_{2}$ ), $3.51(1 \mathrm{H}, \mathrm{d}, J 13$, CHHOTBDMS), $3.63(1 \mathrm{H}, \mathrm{d}, J 13, \mathrm{CH} H O T B D M S), 4.11(1 \mathrm{H}$, $\mathrm{s}, \mathrm{OH}), 4.41(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}), 4.65\left(2 \mathrm{H}, \mathrm{d}, J 8,2^{\prime}-\mathrm{H}_{2}\right)$ and 5.47 ( 1 H, br t, $J 8,1^{\prime}-\mathrm{H}$ ).
(1R*,2R*)-1-(tert-Butyldimethylsiloxymethyl)-2-(1-ethoxy-ethoxy)-1-methyl-3-[(Z)-2'-pivaloyloxyethylidene $]$ cyclohexane 8.-To a stirred and ice-cooled solution of the alcohol $7(9.87 \mathrm{~g}$, 25.7 mmol ) in ethyl vinyl ether ( $50 \mathrm{~cm}^{3}$ ) was added $p$ $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(\sim 50 \mathrm{mg}$, catalytic amount). After being stirred for 1.5 h at $0^{\circ} \mathrm{C}$ the mixture was neutralised with an excess of $\mathrm{NaHCO}_{3}$, diluted with diethyl ether, filtered through Florisil, and concentrated under reduced pressure. The residue was chromatographed over $\mathrm{SiO}_{2}$ to give compound $8(10.7 \mathrm{~g}, 91 \%)$, $n_{\mathrm{D}}^{21} 1.4580$ (Found: $\mathrm{C}, 65.5 ; \mathrm{H}, 10.5 . \mathrm{C}_{25} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{Si}$ requires C , $65.74 ; \mathrm{H}, \quad 10.59 \%$ ); $v_{\max }($ film $) / \mathrm{cm}^{-1} \quad 1730 \mathrm{~s} \quad(\mathrm{C}=\mathrm{O}), \quad 1255 \mathrm{~m}$ (TBDMS), $1150 \mathrm{~s}, 1100 \mathrm{~s}, 1025 \mathrm{~m}, 840 \mathrm{~s}$ and $780 \mathrm{~s} ; \delta_{\mathrm{H}}(90 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.04\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.82(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 0.90(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiBu}^{\prime}\right), 1.21\left(9 \mathrm{H}, \mathrm{s}, \mathrm{COBu}^{t}\right), 1.0-1.4(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Me}$ of EE group), $1.0-2.6\left(6 \mathrm{H}, \mathrm{m}, 4-\right.$, 5 - and $\left.6-\mathrm{H}_{2}\right), 3.0-3.8(4 \mathrm{H}, \mathrm{m}$, $\mathrm{C} \mathrm{H}_{2} \mathrm{OTBDMS}$, and $\mathrm{OCH}_{2} \mathrm{Me}$ ), 4.05 and 4.23 (total $1 \mathrm{H}, 2 \mathrm{~s}$, $2-\mathrm{H}), 4.4-4.8(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHO}), 4.61\left(2 \mathrm{H}, \mathrm{d}, J 8,2^{\prime}-\mathrm{H}_{2}\right)$ and 5.47 ( $1 \mathrm{H}, \mathrm{q}$-like, $J 8,1^{\prime}-\mathrm{H}$ ).
(Z)-2 -[(2R*,3R*)-3-(tert-Butyldimethylsiloxymethyl)-2-(1-ethoxyethoxy)-3-methylcyclohexylidene]ethanol 9.--To a stirred solution of the ester $8(5.11 \mathrm{~g}, 11.2 \mathrm{mmol})$ in dry diethyl ether ( $40 \mathrm{~cm}^{3}$ ) at $-15^{\circ} \mathrm{C}$ was added dropwise a solution of $\mathrm{MeLi}\left(1.4 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O} ; 24 \mathrm{~cm}^{3}, 34 \mathrm{mmol}\right)$. After being stirred for 15 min at $-15^{\circ} \mathrm{C}$, this mixture was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with diethyl ether. The extract was washed successively with water, saturated aq. $\mathrm{NaHCO}_{3}$, and brine, dried ( $\mathrm{MgSO}_{4}$ ), and concentrated under reduced pressure. The residue was chromatographed over $\mathrm{SiO}_{2}$ to give the alcohol $9\left(4.03 \mathrm{~g}, 97 \%\right.$ ), $n_{\mathrm{D}}^{21} 1.4680$ (Found: C, $64.4 ; \mathrm{H}$, 10.8. $\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}$ requires $\mathrm{C}, 64.47 ; \mathrm{H}, 10.82 \%$ ); $v_{\text {max }}($ film $)$ / $\mathrm{cm}^{-1} 3450 \mathrm{~s}(\mathrm{OH}), 1665 \mathrm{w}(\mathrm{C}=\mathrm{C}), 1250 \mathrm{~s}(\mathrm{TBDMS}), \sim 1100 \mathrm{~s}$, $1010 \mathrm{~s}, 980 \mathrm{~m}, ~ 935 \mathrm{~m}, ~ 840 \mathrm{~s}, 780 \mathrm{~s}$ and $665 \mathrm{~m} ; \delta_{\mathbf{H}}(90 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 0.04\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.82(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me}), 0.91\left(9 \mathrm{H}, \mathrm{Bu}^{t}\right)$, $1.0-1.4(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Me}$ of EE group $), 1.0-2.6(6 \mathrm{H}, \mathrm{m}, 4-, 5-\mathrm{and}$

6- $\mathrm{H}_{2}$ ), 2.7-4.1 ( $5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OTBDMS}, \mathrm{OCH}_{2} \mathrm{Me}$, and OH ), 4.1-4.6 ( $3 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{2}$ and 2-H), 4.6-5.0 (1 H, m, OCHO) and 5.66 and 5.87 (total $1 \mathrm{H}, 2 \mathrm{t}, J 8,2^{\prime}-\mathrm{H}$ ).
(1R*,2R*)-3-[(Z)-2'-Bromoethylidene $]$-1-(tert-butyldimethyl-siloxymethyl)-2-(1-ethoxyethoxy)-1-methylcyclohexane 10.-To a stirred and ice-cooled solution of the alcohol $9(3.53 \mathrm{~g}, 9.49$ mmol ) and triphenylmethane ( $\sim 0.5 \mathrm{mg}$, as an indicator) in dry diethyl ether ( $20 \mathrm{~cm}^{3}$ ) and dry hexamethylphosphoric triamide (HMPA) ( $15 \mathrm{~cm}^{3}$ ), was added BuLi ( $1.61 \mathrm{~mol} \mathrm{dm}^{-3}$ in hexane; $\sim 6.0 \mathrm{~cm}^{3}$ ) dropwise under Ar until the colour turned red. $p-\mathrm{TsCl}(2.12 \mathrm{~g}, 11.4 \mathrm{mmol})$ was added portionwise to this solution and the mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$. Lithium bromide ( $4.11 \mathrm{~g}, 47.3 \mathrm{mmol}$ ) was added portionwise to this mixture, which was then stirred and allowed to warm gradually to warm temperature during 2 h before being poured into saturated aq. $\mathrm{NaHCO}_{3}$ and extracted with diethyl etherpentane (1:2). The organic layer was washed successively with water, saturated aq. $\mathrm{NaHCO}_{3}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure to give the bromide 10 ( 4.40 g , quant.), $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1660 \mathrm{w}(\mathrm{C}=\mathrm{C}), 1250 \mathrm{~m}$ (TBDMS), $1090 \mathrm{~s}, 1020 \mathrm{~s}, 835 \mathrm{~s}, 775 \mathrm{~s}$ and 665 m . This compound was employed for the next step without further purification.
(1R*,2R*)-1-(tert-Butyldimethylsiloxymethyl)-2-(1-ethoxy-ethoxy)-1-methyl-3-[(Z)-2'-phenylsulfonylethylidene $]$ cyclohexane 11.-To a mixture of bromide 10 [4.40 g (crude), $\sim 9.48$ $\mathrm{mmol}]$ and $\mathrm{NaHCO}_{3}(80 \mathrm{mg}, 0.95 \mathrm{mmol})$ in dry DMF $\left(40 \mathrm{~cm}^{3}\right)$ was added $\mathrm{PhSO}_{2} \mathrm{Na} \cdot \mathrm{H}_{2} \mathrm{O}(3.12 \mathrm{~g}, 17.1 \mathrm{mmol})$ and the mixture was stirred at room temperature for 2 days, poured into water, and extracted with diethyl ether. The extract was washed successively with water, saturated aq. $\mathrm{NaHCO}_{3}$, and brine, dried ( $\mathrm{MgSO}_{4}$ ), and concentrated under reduced pressure. The residue was chromatographed over $\mathrm{SiO}_{2}$ to give the alcohol $(0.19 \mathrm{~g}, 5.4 \%)$ and the sulfone $11(3.46 \mathrm{~g}, 78 \%$ from consumed 9 in 2 steps), $n_{\mathrm{D}}^{21} 1.5012$ (Found: C, 63.2; $\mathrm{H}, 9.0 . \mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{SSi}$ requires $\mathrm{C}, 62.86 ; \mathrm{H}, 8.93 \%$ ); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3060 \mathrm{w}$ (aromatic), $1660 \mathrm{w}(\mathrm{C}=\mathrm{C}), 1585 \mathrm{w}$ (aromatic), 1445 m (aromatic), 1320 s $\left(\mathrm{SO}_{2}\right), 1305 \mathrm{~s}, 1250 \mathrm{~m}$ (TBDMS), $1150 \mathrm{~s}\left(\mathrm{SO}_{2}\right), 1085 \mathrm{~s}\left(\mathrm{SO}_{2}\right)$, $1020 \mathrm{~m}, 840 \mathrm{~s}, 775 \mathrm{~s}$ and $685 \mathrm{~m}(\mathrm{C}-\mathrm{S}) ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.00$ $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.57$ and 0.64 (total $\left.3 \mathrm{H}, 2 \mathrm{~s}, 1-\mathrm{Me}\right), 0.88(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{Bu}^{t}\right), 1.0-1.3(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Me}$ of EE group $), 1.0-2.7(6 \mathrm{H}, \mathrm{m}, 4-$, 5- and 6- $\mathrm{H}_{2}$ ), 2.9-4.1 ( $7 \mathrm{H}, \mathrm{m}, 2$ - and $2^{\prime}-\mathrm{H}_{2}, \mathrm{CH}_{2} \mathrm{OTBDMS}$ and $\mathrm{OCH}_{2} \mathrm{Me}$ ), 4.22 and 4.1 (total $1 \mathrm{H}, 2 \mathrm{q}, J 5, \mathrm{OCHO}$ ), $5.50(1 \mathrm{H}$, q-like, $\left.J 8,1^{\prime}-\mathrm{H}\right), 7.4-7.8(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.8-8.0(2 \mathrm{H}, \mathrm{ArH})$.
(Z,Z)-3,3'-Bis-(tert-butyldimethylsiloxymethyl)-2,2'-bis-(1-ethoxyethoxy)-3,3'-dimethylbutanediylidenedicyclohexane $\left(2 \mathrm{R}^{*}, 2^{\prime} \mathrm{S}^{*}, 3 \mathrm{R}^{*}, 3^{\prime} \mathrm{S}^{*}\right)$-Isomer 12a and ( $2 \mathrm{R}^{*}, 2^{\prime} \mathrm{R}^{*}, 3 \mathrm{R}^{*}, 3^{\prime} \mathrm{R}^{*}$ )Isomer 12b.—BuLi ( $1.68 \mathrm{~mol} \mathrm{dm}^{-3}$ in hexane; $6.0 \mathrm{~cm}^{3}, 10 \mathrm{mmol}$ ) was added dropwise to a stirred solution of sulfone $11(4.31 \mathrm{~g}$, 8.70 mmol ) in a mixture of dry THF ( $20 \mathrm{~cm}^{3}$ ) and HMPA $\left(8 \mathrm{~cm}^{3}\right)$ at $-70^{\circ} \mathrm{C}$ under Ar and the mixture was stirred for a further 15 min . To this mixture at $-70^{\circ} \mathrm{C}$ was added dropwise a solution of bromide $10(4.63 \mathrm{~g}, 103 \mathrm{mmol})$ in dry THF ( 12 $\mathrm{cm}^{3}$ ). This mixture was stirred and allowed to warm to $0^{\circ} \mathrm{C}$ during 2.5 h . It was then quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with water, and extracted with diethyl ether. The extract was washed successively with water, saturated aq. $\mathrm{NaHCO}_{3}$, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was filtered through $\mathrm{SiO}_{2}$ to give a complex mixture ( 6.49 g ). This mixture was dissolved in a mixture of dry THF ( $20 \mathrm{~cm}^{3}$ ) and $\mathrm{MeOH}\left(20 \mathrm{~cm}^{3}\right)$ under Ar and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(10.8 \mathrm{~g}, 76.1 \mathrm{mmol})$ was added to this solution. $\mathrm{Na}-\mathrm{Hg}(5 \% ; 32.2 \mathrm{~g})$ was added portionwise to this suspension at $0^{\circ} \mathrm{C}$. After being stirred at room temperature for 1 h , the mixture was diluted with diethyl ether and filtered through Celite. The filtrate was washed successively with water,
saturated aq. $\mathrm{NaHCO}_{3}$, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed over $\mathrm{SiO}_{2}$ to give compounds 12a and 12b as an inseparable mixture ( $1.39 \mathrm{~g}, 23 \%$ from 11), $n_{\mathrm{D}}^{21} 1.4716$ (Found: C, $67.7 ; \mathrm{H}, 11.0 . \mathrm{C}_{40} \mathrm{H}_{78} \mathrm{O}_{6} \mathrm{Si}_{2}$ requires C, $67.55 ; \mathrm{H}, 11.05 \%$ ); $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 1650 \mathrm{br} \mathrm{w}(\mathrm{C}=\mathrm{C}), 1250 \mathrm{~m}$ (TBDMS), 1080 s , $1020 \mathrm{~s}, 840 \mathrm{~s}$ and $775 \mathrm{~s} ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.04(12 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Me}_{2} \mathrm{Si}\right), 0.83\left(6 \mathrm{H}, \mathrm{s}, 3-, 3^{\prime}-\mathrm{Me}\right), 0.91\left(18 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{1}\right), 1.0-1.4$ ( $12 \mathrm{H}, \mathrm{m}$, Me of EE group), $1.0-2.7\left(16 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{CCH}_{2} \mathrm{C}\right), 3.0-$ $3.9\left(8 \mathrm{H}, \mathrm{m}, \mathrm{SiOCH}_{2}\right.$ and $\mathrm{OCH}_{2} \mathrm{Me}$ ), 4.03 and 4.23 (total 2 H , $\left.2 \times \mathrm{br} \mathrm{s}, 2-, 2^{\prime}-\mathrm{H}\right), 4.55(2 \mathrm{H}, \mathrm{br} \mathrm{q}, J 6, \mathrm{OCHO})$ and $5.35(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}=$ ).
(Z,Z)-6,6'-Bis-(tert-butyldimethylsiloxymethyl)-6,6'-dimethyl-$2,2^{\prime}$-butanediylidenedicyclohexanol ( $1 \mathrm{R}^{*}, 1^{\prime} \mathrm{S}^{*}, 6 \mathrm{R}^{*}, 6^{\prime} \mathrm{S}^{*}$ )-Isomer 13a and ( $1 \mathrm{R}^{*}, 1^{\prime} \mathrm{R}^{*}, 6 \mathrm{R}^{*}, 6^{\prime} \mathrm{R}^{*}$ )-Isomer 13b.-A solution of compounds 12a and $\mathbf{1 2 b}(1.71 \mathrm{~g}, 2.41 \mathrm{mmol})$ and PPTS ( $\sim 20$ mg , cat.) in $\mathrm{MeOH}\left(40 \mathrm{~cm}^{3}\right)$ was stirred at $25^{\circ} \mathrm{C}$ for 2 days. It was then diluted with AcOEt, neutralised with $\mathrm{NaHCO}_{3}$, and filtered through Florisil. The filtrate was concentrated under reduced pressure to give deprotected products ( 1.01 g , quant.), $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3400 \mathrm{~s}(\mathrm{OH})$. The product was then dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ and $\mathrm{Et}_{3} \mathrm{~N}\left(1.7 \mathrm{~cm}^{3}, 12 \mathrm{mmol}\right)$, TBDMSCl ( $1.09 \mathrm{~g}, 7.23 \mathrm{mmol}$ ) and 4-(dimethylamino) pyridine (DMAP) ( $\sim 10 \mathrm{mg}$, cat.) were added. After being stirred at room temperature for 2 h , the mixture was poured into water and extracted with diethyl ether. The extract was washed successively with water, saturated aq. $\mathrm{NaHCO}_{3}$, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed over $\mathrm{SiO}_{2}$ to give meso-product $13 \mathbf{a}(0.58 \mathrm{~g}, 39 \%)$ (more polar) and ( $\pm$ )-product 13 b ( 0.38 g , $28 \%$ ) (less polar). (The relative stereochemistry of compound 13a was confirmed by X-ray analysis of a crystal of the more polar product.)
(a) $\left(\mathrm{IR}^{*}, \mathrm{I}^{\prime} \mathrm{S}^{*}, 6 \mathrm{R}^{*}, 6^{\prime} \mathrm{S}^{*}\right)$-Isomer 13a. Compound 13a was recrystallised from hexane to give pure crystals (rods) $(0.47 \mathrm{~g}$, $34 \%$ ), m.p. $95-97{ }^{\circ} \mathrm{C}$ (Found: C, 67.8; H, 11.1. $\mathrm{C}_{32} \mathrm{H}_{62} \mathrm{O}_{4} \mathrm{Si}_{2}$ requires C, $67.79 ; \mathrm{H}, 11.02 \%$ ); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3450 \mathrm{~s}(\mathrm{OH})$, 2940s (CH), 2860s (CH), 1250m (TBDMS), 1085s, 1065s, $1030 \mathrm{~m}, 835 \mathrm{~s}$ and $775 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.08(12 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Me}_{2} \mathrm{Si}\right), 0.69\left(6 \mathrm{H}, \mathrm{s}, 6-, 6^{\prime}-\mathrm{Me}\right), 0.91\left(18 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{\prime}\right), 1.02(2 \mathrm{H}, \mathrm{br}$ d, $\left.J 13,5-5^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 1.40-1.70\left(4 \mathrm{H}, \mathrm{m}, 4-4^{\prime}-\mathrm{H}_{2}\right), 1.89(2 \mathrm{H} \mathrm{brd}, J$ $\left.13,3-, 3^{\prime}-\mathrm{H}_{\text {eq }}\right), 2.00-2.25\left(6 \mathrm{H}, \mathrm{m},=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\right.$ and $\left.5-, 5^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 2.46\left(2 \mathrm{H}, \mathrm{dt}, J 5\right.$ and $\left.13,3-, 3^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 3.49(2 \mathrm{H}, \mathrm{d}, J 10$, $2 \times \mathrm{SiOCH}), 3.60(2 \mathrm{H}, \mathrm{d}, J 10,2 \times \mathrm{SiOCH}), 3.86(2 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, $4.38\left(2 \mathrm{H}, \mathrm{s}, 1-, 1^{\prime}-\mathrm{H}\right)$ and $5.28(2 \mathrm{H}, \mathrm{br}, \mathrm{CH}=) ; \delta_{\mathrm{C}}(22.4 \mathrm{MHz}$; $\mathrm{C}_{6} \mathrm{D}_{6}$ ) $-5.5,18.4,19.3,23.1,26.1,27.6,28.9,31.9,40.2,71.7,72.1$, 125.4, 139.5.
(b) ( $\left.1 \mathrm{R}^{*}, \mathrm{I}^{\prime} \mathrm{R}^{*}, 6 \mathrm{R}^{*}, 6^{\prime} \mathrm{R}^{*}\right)$-Isomer 13b. To prepare an analytical sample, a small amount of compound 13b was recrystallised from hexane to give needles, m.p. $69-71^{\circ} \mathrm{C}$ (Found: C, $67.8 ; \mathrm{H}$, $11.0 \%$ ); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3440 \mathrm{~s}(\mathrm{OH}), 2940 \mathrm{~s}(\mathrm{CH}), 2860 \mathrm{~s}(\mathrm{CH})$, 1250 m (TBDMS), $1100 \mathrm{~s}, 1060 \mathrm{~s}, 1025 \mathrm{~m}, 835 \mathrm{~s}$ and $775 \mathrm{~s} ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.08\left(12 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.70\left(6 \mathrm{H}, \mathrm{s}, 6-, 6{ }^{\prime}-\mathrm{Me}\right), 0.91$ $\left(18 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{\prime}\right), 1.02\left(2 \mathrm{H}, \mathrm{brd}, J 13,5-, 5^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 1.40-1.70(4 \mathrm{H}, \mathrm{m}$, $\left.4-, 4^{\prime}-\mathrm{H}\right), 1.88\left(2 \mathrm{H}, \mathrm{br}\right.$ d, $\left.J 13,3-, 3^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 1.95-2.25(6 \mathrm{H}, \mathrm{m}$, $=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=$ and $\left.5-, 5^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 2.48\left(2 \mathrm{H}, \mathrm{dt}, J 4\right.$ and $13,3-3^{\prime}-$ $\mathrm{H}_{\mathrm{ax}}$ ) $3.50(2 \mathrm{H}, \mathrm{d}, J 10, \mathrm{SiOCH}), 3.56(2 \mathrm{H}, \mathrm{d}, J 10, \mathrm{SiOCH}), 3.83$ $(2 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 4.34\left(2 \mathrm{H}, \mathrm{s}, 1-11^{\prime}-\mathrm{H}\right)$ and $5.28(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}=)$; $\delta_{\mathrm{C}}\left(22.4 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right)-5.5,18.4,19.1,23.2,26.1,27.2,28.9$, $32.0,40.2,71.2,71.7,125.1$ and 139.8 .
( $2 \mathrm{R}^{*}, 2^{\prime} \mathrm{S}^{*}, 3 \mathrm{R}^{*}, 3^{\prime} \mathrm{S}^{*}, \mathrm{Z}, \mathrm{Z}$ )-3,3'-Bis-(tert-butyldimethylsiloxy-methyl)-2,2'-bis-(1-ethoxyethoxy)-3,3'-dimethylbutanediylidenedicyclohexane 12a.-A solution of the diol $13 \mathrm{a}(365 \mathrm{mg}, 644 \mu \mathrm{~mol})$ and $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}\left(\sim 10 \mathrm{mg}\right.$, cat.) in ethyl vinyl ether $\left(2 \mathrm{~cm}^{3}\right)$ was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h . It was then neutralised with $\mathrm{NaHCO}_{3}$ and filtered through Florisil. The filtrate was concentrated
under reduced pressure. The residue was chromatographed over $\mathrm{SiO}_{2}$ to give compound 12a ( $449 \mathrm{mg}, 98 \%$ ), $n_{\mathrm{D}}^{22} 1.4710$ (Found: C, $67.45 ; \mathrm{H}, 11.0 . \mathrm{C}_{40} \mathrm{H}_{78} \mathrm{O}_{6} \mathrm{Si}_{2}$ requires $\mathrm{C}, 67.55 ; \mathrm{H}$, $11.05 \%$ ); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1650 \mathrm{br} w(\mathrm{C}=\mathrm{C}), 1250 \mathrm{~m}$, (TBDMS), $1085 \mathrm{~s}, 1020 \mathrm{~s}, 835 \mathrm{~s}$ and $770 \mathrm{~s} ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.04(12 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.83\left(6 \mathrm{H}, \mathrm{s}, 3-, 3^{\prime}-\mathrm{Me}\right), 0.91\left(18 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.0-1.4$ ( $12 \mathrm{H}, \mathrm{m}, \mathrm{Me}$ of EE group), $1.0-2.7\left(16 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{CCH}_{2} \mathrm{C}\right), 3.0-$ $3.9\left(8 \mathrm{H}, \mathrm{m}, \mathrm{SiOCH}_{2}\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 4.03$ and 4.23 (total 2 H , $\left.2 \times \mathrm{br} \mathrm{s}, 2-, 2^{\prime}-\mathrm{H}\right), 4.55(2 \mathrm{H}, \mathrm{br} \mathrm{q}, J 6, \mathrm{OCHO})$ and $5.36(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}=$ ).
( $2 \mathrm{R}^{*}, 2^{\prime} \mathrm{R}^{*}, 3 \mathrm{R}^{*}, 3^{\prime} \mathrm{R}^{*}, Z, \mathrm{Z}$ )-3,3'-Bis-(tert-butyldimethylsiloxy-methyl)-2,2'-bis-(1-ethoxyethoxy)-3,3'-dimethylbutanediylidenedicyclohexane 12b.-In the same manner as described above, the diol 13b ( $339 \mathrm{mg}, 599 \mu \mathrm{~mol}$ ) was converted into compound 12b ( $331 \mathrm{mg}, 90 \%$ ), $n_{\mathrm{D}}^{22} 1.4717$ (Found: C, $67.55 ; \mathrm{H}, 11.0 \%$ ); $v_{\max }($ film $) / \mathrm{cm}^{-1} 1650 \mathrm{br} \mathrm{w}(\mathrm{C}=\mathrm{C}), 1250 \mathrm{~m}$ (TBDMS), 1085 s , $1020 \mathrm{~s}, 840 \mathrm{~s}$ and $775 \mathrm{~s} ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.04(12 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Me}_{2} \mathrm{Si}\right), 0.83\left(6 \mathrm{H}, \mathrm{s}, 3-, 3^{\prime}-\mathrm{Me}\right), 0.91\left(18 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.0-1.4$ $\left(12 \mathrm{H}, \mathrm{m}\right.$, Me of EE group), $1.0-2.7\left(16 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{CCH}_{2} \mathrm{C}\right), 3.0-$ $3.9\left(8 \mathrm{H}, \mathrm{m}, \mathrm{SiOCH}_{2}\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 4.03$ and 4.23 (total 2 H , $\left.2 \times \mathrm{br} \mathrm{s}, 1-, 1^{\prime}-\mathrm{H}\right), 4.55(2 \mathrm{H}, \mathrm{br} \mathrm{q}, J 6, \mathrm{OCHO})$ and $5.36(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}=$ ).

## ( $\left.1 \mathrm{R}^{*}, 1^{\prime} \mathrm{S}^{*}, 2 \mathrm{R}^{*}, 2^{\prime} \mathrm{S}^{*}, \mathrm{Z}, \mathrm{Z}\right)-2,2^{\prime}$-Bis-(1-ethoxyethoxy)-1,1-di-

 methyl-3,3'-butanediylidenedi( (cyclohexylmethanol) 14a.-To a solution of 12a ( $438 \mathrm{mg}, 617 \mu \mathrm{~mol}$ ) in dry THF ( $5 \mathrm{~cm}^{3}$ ) was added TBAF ( $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ in THF; $2.5 \mathrm{~cm}^{3}, 2.5 \mathrm{mmol}$ ) and the mixture was stirred at room temperature for 6 h before being poured into water and extracted with diethyl ether. The extract was washed successively with water, saturated aq. $\mathrm{NaHCO}_{3}$, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed over $\mathrm{SiO}_{2}$ to give the alcohol 14 a ( 297 mg , quant.), $n_{\mathrm{D}}^{21} 1.4912$ (Found: C, 69.9; H, 10.65. $\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{O}_{6}$ requires C, $69.67 ; \mathrm{H}, 10.44 \%$ ); $v_{\max }$ (film) $/ \mathrm{cm}^{-1}$ $3450 \mathrm{~s}(\mathrm{OH}), 1650 \mathrm{br} w(\mathrm{C}=\mathrm{C}), 1120 \mathrm{~s}, 1090 \mathrm{br}$ s, $1030 \mathrm{~s}, 980 \mathrm{~m}$ and $940 \mathrm{~m} ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.76$ and 0.82 (total $6 \mathrm{H}, 2 \mathrm{~s}, 1-, 1^{\prime}-$ Me ), 1.0-1.4 ( $12 \mathrm{H}, \mathrm{m}$, Me of EE group), 1.0-2.7 ( $16 \mathrm{H}, \mathrm{m}$, $\left.8 \times \mathrm{CCH}_{2} \mathrm{C}\right), 2.8-4.0\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{OCH}_{2} \mathrm{Me}\right.$ and OH$)$, 4.06 and 4.30 (total $2 \mathrm{H}, 2 \times \mathrm{br} \mathrm{s}, 2-2^{\prime}-\mathrm{H}$ ), 4.55 ( 2 H , quint-like, $J 6, \mathrm{OCHO})$ and $5.39(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=)$.( $\left.1 \mathrm{R}^{*}, 1^{\prime} \mathrm{R}^{*}, 2 \mathrm{R}^{*}, 2^{\prime} \mathrm{R}^{*}, \mathrm{Z}, \mathrm{Z}\right)-2,2^{\prime}$-Bis-( $\left(1\right.$-ethoxyethoxy) $-1,1^{\prime}$-di-methyl-3,3'-butanediylidenedi(cyclohexylmethanol) 14b.-In the same manner as described above, compound $\mathbf{1 2 b}$ ( 375 mg , 528 $\mu \mathrm{mol}$ ) was converted into the alcohol 14 b ( $250 \mathrm{mg}, 98 \%$ ), $n_{\mathrm{D}}^{21}$ 1.4960 (Found: C, $69.5 ; \mathrm{H}, 10.5 \%$ ); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3450 \mathrm{~s}$ $(\mathrm{OH}), 1650 \mathrm{br} \mathrm{w}(\mathrm{C}=\mathrm{C}), 1120 \mathrm{~s}, 1090 \mathrm{br} \mathrm{s}, 1020 \mathrm{br} \mathrm{s}, 980 \mathrm{~m}$ and $940 \mathrm{~m} ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.7-0.9\left(6 \mathrm{H}, \mathrm{m}, 1-, 1^{\prime}-\mathrm{Me}\right), 1.0-1.4$ ( $12 \mathrm{H}, \mathrm{m}$, Me of EE group), $1.0-2.7\left(16 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{CCH}_{2} \mathrm{C}\right.$ ), 2.7-4.0 ( $10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{OCH}_{2} \mathrm{Me}$ and OH$), 4.07$ and 4.31 (total $\left.2 \mathrm{H}, 2 \times \mathrm{brs}, 2-, 2^{\prime}-\mathrm{H}\right), 4.52(2 \mathrm{H}$, quint-like, $J 6, \mathrm{OCHO})$ and $5.40(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=)$.
( $\left.\mathrm{R}^{*}, 1^{\prime}, \mathrm{S}^{*}, 2 \mathrm{~S}^{*}, 2^{\prime} \mathrm{R}^{*}, \mathrm{Z}, \mathrm{Z}\right)-2,2^{\prime}$-Bis-(1-ethoxyethoxy)-1, $1^{\prime}-d i-$ methyl-3,3'-butanediylidenedicyclohexanecarbaldehyde 15a.Dimethyl sulfoxide (DMSO) ( $260 \mathrm{~mm}^{3}, 3.66 \mathrm{mmol}$ ) was added to a stirred solution of $(\mathrm{COCl})_{2}\left(152 \mathrm{~mm}^{3}, 1.74 \mathrm{mmol}\right)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3.5 \mathrm{~cm}^{3}\right)$ at $-70^{\circ} \mathrm{C}$ under Ar. A solution of diol 14a $(260 \mathrm{mg}, 539 \mu \mathrm{~mol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.5 \mathrm{~cm}^{3}\right)$ was added dropwise and the mixture was stirred at $-70^{\circ} \mathrm{C}$ for 30 min . To this mixture was added $\mathrm{Et}_{3} \mathrm{~N}\left(1.2 \mathrm{~cm}^{3}, 8.6 \mathrm{mmol}\right)$ and the reaction mixture was allowed to warm to $0^{\circ} \mathrm{C}$ during 1 h before being poured into water and extracted with diethyl ether. The extract was washed successively with water, saturated aq. $\mathrm{NaHCO}_{3}$, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed over $\mathrm{SiO}_{2}$ to give the dialdehyde 15 a ( 248 mg , quant.), $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1}$
$2700 \mathrm{w}(\mathrm{CHO}), 1725 \mathrm{~s}(\mathrm{CHO}), 1125 \mathrm{~s}, 1090 \mathrm{~s}$ and $1025 \mathrm{~s} ; \delta_{\mathrm{H}}(90$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.96\left(6 \mathrm{H}\right.$, br s, 1-, $\left.1^{\prime}-\mathrm{Me}\right), 1.0-1.4(12 \mathrm{H}, \mathrm{m}$, Me of EE group), 1.0-2.7 ( $16 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{CCH}_{2} \mathrm{C}$ ), 3.1-3.8 ( $4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 4.2-4.8\left(4 \mathrm{H}, \mathrm{m}, 2-, 2^{\prime}-\mathrm{H}\right.$ and OCHO$), 5.50(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{C})$ and $9.60(2 \mathrm{H}$, br s, CHO). This was employed for the next step without further purification.
$\left(1 \mathrm{R}^{*}, 1^{\prime} \mathrm{R}^{*}, 2 \mathrm{~S}^{*}, 2^{\prime} \mathrm{S}^{*}, \mathrm{Z}, \mathrm{Z}\right)-2,2^{\prime}-$ Bis-(1-ethoxyethoxy)-1, $1^{\prime}$-di-methyl-3,3'-butanediylidenedicyclohexanecarbaldehyde 15b.-In the same manner as described above, diol $14 b(230 \mathrm{mg}, 477$ $\mu \mathrm{mol}$ ) was oxidised to the dialdehyde 15 b ( 230 mg , quant.), $v_{\max }($ film $) / \mathrm{cm}^{-1} 2700 \mathrm{w}(\mathrm{CHO}), 1725 \mathrm{~s}(\mathrm{CHO}), 1120 \mathrm{~s}, 1080 \mathrm{~s}$ and $1020 \mathrm{~s} ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.96\left(6 \mathrm{H}\right.$, br s, $\left.1-, 1^{\prime}-\mathrm{Me}\right), 1.0-1.4$ ( $12 \mathrm{H}, \mathrm{m}$, Me of EE group), $1.0-2.7\left(16 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{CCH}_{2} \mathrm{C}\right), 3.1-$ $3.8\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Me}\right), 4.2-4.7\left(4 \mathrm{H}, \mathrm{m}, 2-, 2^{\prime}-\mathrm{H}\right.$ and OCHO$)$, $5.50(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C})$ and $9.60(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHO})$. This was employed for the next step without further purification.
(RS, $\left.\mathrm{R}^{\prime \prime} \mathrm{S}^{\prime \prime}\right)-2,2^{\prime \prime}-\left[\left(1 \mathrm{R}^{*}, 1^{\prime} \mathrm{S}^{*}, 2 \mathrm{~S}^{*}, 2^{\prime} \mathrm{R}^{*}, \mathrm{Z}, \mathrm{Z}\right)-2,2^{\prime}\right.$-Bis-(1-ethoxy-ethoxy)-1,1'-dimethyl-3,3'-butanediylidenedicyclohexyl]dioxirane $16 \mathbf{a}$.-To a stirred solution of dial $15 \mathrm{a}(245 \mathrm{mg}, 513 \mu \mathrm{~mol})$ and $\mathrm{ClCH}_{2} \mathrm{I}\left(131 \mathrm{~mm}^{3}, 1.80 \mathrm{mmol}\right)$ in dry THF $\left(4 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{BuLi}\left(1.68 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in hexane; $916 \mathrm{~mm}^{3}$, 1.54 mmol ) dropwise under Ar. Then the cooling-bath was removed and the stirred reaction mixture was allowed to warm to room temperature during 1.5 h . It was then poured into water and extracted with diethyl ether. The extract was washed successively with water, saturated aq. $\mathrm{NaHCO}_{3}$, and brine, dried ( $\mathrm{MgSO}_{4}$ ), and concentrated under reduced pressure. The residue was chromatographed over $\mathrm{SiO}_{2}$ to give the diepoxide 16a ( $247 \mathrm{mg}, 95 \%$ ), $n_{\mathrm{D}}^{21} \mathrm{l} .4930$ (Found: C, $71.1 ; \mathrm{H}, 10.0$. $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{6}$ requires C, $71.11 ; \mathrm{H}, 9.95 \%$ ); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1125 \mathrm{~s}$, $1095 \mathrm{~s}, 1060 \mathrm{~m}, 1020 \mathrm{~s}, 975 \mathrm{~m}, 925 \mathrm{~m}, 885 \mathrm{~m}$ and $855 \mathrm{~m} ; \delta_{\mathrm{H}}(90$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.68$ and 0.72 (total $\left.6 \mathrm{H}, 2 \times \mathrm{br} \mathrm{s}, 1-, 1^{\prime}-\mathrm{Me}\right)$, $1.0-1.4(12 \mathrm{H}, \mathrm{m}, \mathrm{Me}$ of EE group), $0.8-2.7(16 \mathrm{H}, \mathrm{m}$, $\left.8 \times \mathrm{CCH}_{2} \mathrm{C}\right), 2.70\left(4 \mathrm{H}\right.$, br d$\left., \mathrm{J} 4, \mathrm{OCH}_{2} \mathrm{CH}\right), 3.0-4.0(6 \mathrm{H}, \mathrm{m}$, $\mathrm{OCH}_{2} \mathrm{CH}$ and $\mathrm{OCH}_{2} \mathrm{Me}$ ), 3.97 and 4.29 (total $2 \mathrm{H}, 2 \mathrm{~s}, 2-, 2^{\prime}-\mathrm{H}$ ), $4.60(2 \mathrm{H}, \mathrm{m}, \mathrm{OCHO})$ and $5.42(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=)$.
(RS, $\left.\mathrm{R}^{\prime \prime} \mathrm{S}^{\prime \prime}\right)-2,2^{\prime \prime}-\left[\left(1 \mathrm{R}^{*}, 1^{\prime} \mathrm{R}^{*}, 2 \mathrm{~S}^{*}, 2^{\prime} \mathrm{S}^{*}, \mathrm{Z}, \mathrm{Z}\right)-2,2^{\prime}\right.$-Bis-(1-ethoxy-ethoxy)-1,1'-dimethyl-3,3'-butanediylidenedicyclohexyl]dioxirane 16b.-In the same manner as described above, dial 15b (227 $\mathrm{mg}, 475 \mu \mathrm{~mol}$ ) was converted into the diepoxide $16 \mathrm{~b}(218 \mathrm{mg}$, $91 \%$ ), $n_{D}^{21} 1.4952$ (Found: C, $70.75 ; \mathrm{H}, 9.9 \%$ ); $v_{\max }($ film $) / \mathrm{cm}^{-1}$ $1125 \mathrm{~s}, 1090 \mathrm{~s}, 1020 \mathrm{~s}, 975 \mathrm{~m}, 925 \mathrm{~m}, 885 \mathrm{~m}$ and $855 \mathrm{~m} ; \delta_{\mathrm{H}}(90 \mathrm{MHz} ;$ $\mathrm{CDCl}_{3}$ ) 0.68 and 0.72 (total $6 \mathrm{H}, 2 \times$ br s, $1-, 1^{\prime}-\mathrm{Me}$ ), $1.0-1.4(12$ $\mathrm{H}, \mathrm{m}, \mathrm{Me}$ of EE group), $0.8-2.7\left(16 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{CCH}_{2} \mathrm{C}\right), 2.70(4$ $\left.\mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 4, \mathrm{OCH}_{2} \mathrm{CH}\right), 3.0-4.0\left(6 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}\right.$ and $\mathrm{OCH}_{2} \mathrm{Me}$ ), 3.97 and 4.28 (total $\left.2 \mathrm{H}, 2 \mathrm{~s}, 2-, 2^{\prime}-\mathrm{H}\right), 4.60(2 \mathrm{H}, \mathrm{m}$, $\mathrm{OCHO})$ and $5.41(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=)$.
(RS, $\left.\mathrm{R}^{\prime \prime} \mathrm{S}^{\prime \prime}\right)-1,1^{\prime \prime}-\left[\left(1 \mathrm{R}^{*}, 1 \mathrm{~S}^{*}, 2 \mathrm{R}^{*}, 2^{\prime} \mathrm{S}^{*}, \mathrm{Z}, \mathrm{Z}\right)-2,2^{\prime}\right.$-Bis-(1-ethoxy-ethoxy')-1.1'-dimethyl-3,3'-butanediylidenedicyclohexyl]-4,4"-di-methyldi(pent-3-en-1-ol) 17a.-A solution of 2-methylprop-1enylmagnesium bromide ( $\sim 0.6 \mathrm{~mol} \mathrm{dm}^{-3}$ in THF) was prepared in the usual manner and a portion ( $4 \mathrm{~cm}^{3} ; 2.4 \mathrm{mmol}$ ) of it was added dropwise to a mixture of the bis-oxirane 16a (201 $\mathrm{mg}, 397 \mu \mathrm{~mol})$ and $\mathrm{CuI}(40 \mathrm{mg}, 0.21 \mathrm{mmol})$ in dry THF ( $2 \mathrm{~cm}^{3}$ ) at $-70^{\circ} \mathrm{C}$ under Ar. While being stirred the mixture was allowed to warm to room temperature ( 1 h ), and was then stirred at $35^{\circ} \mathrm{C}$ for a further 1 h before being quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with diethyl ether. The extract was washed successively with water, saturated aq. $\mathrm{NaHCO}_{3}$, and brine, dried ( $\mathrm{MgSO}_{4}$ ), and concentrated under reduced pressure. The residue was chromatographed over $\mathrm{SiO}_{2}$ to give the alcohol 17 a ( $241 \mathrm{mg}, 98 \%$ ), $n_{\mathrm{D}}^{22} 1.5008$ (Found: C , 73.75: H, 10.85. $\mathrm{C}_{38} \mathrm{H}_{66} \mathrm{O}_{6}$ requires $\mathrm{C}, 73.74 ; \mathrm{H}, 10.75 \%$ ); $\nu_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3510 \mathrm{~m}(\mathrm{O}-\mathrm{H}), 1125 \mathrm{~s}, 1090 \mathrm{~s}, 1060 \mathrm{~m}$ and $1010 \mathrm{~s} ;$
$\delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.77\left(6 \mathrm{H}\right.$, br s, 1-, $\left.1^{\prime}-\mathrm{Me}\right), 1.0-1.4(12 \mathrm{H}$, m , Me of EE group), 1.63 and 1.75 (total $12 \mathrm{H}, 2 \times$ br s, $\left.\mathrm{Me}_{2} \mathrm{C}=\mathrm{C}\right), 1.0-2.7\left(22 \mathrm{H}, \mathrm{m}, 10 \times \mathrm{CCH}_{2} \mathrm{C}\right.$ and OH$), 3.1-4.7(10$ $\mathrm{H}, \mathrm{m}, 4 \times \mathrm{OCH}, \mathrm{OCH}_{2} \mathrm{Me}$ and OCHO$)$ and $5.38(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=$ ).
(RS, $\left.\mathrm{R}^{\prime \prime} \mathrm{S}^{\prime \prime}\right)-1,1^{\prime \prime}-\left[\left(1 \mathrm{R}^{*}, 1^{\prime} \mathrm{R}^{*}, 2 \mathrm{R}^{*}, 2^{\prime} \mathrm{R}^{*}, \mathrm{Z}, \mathrm{Z}\right)-2,2^{\prime}\right.$-Bis-(1-ethoxy-ethoxy)-1, $1^{\prime}$-dimethyl-3,3'-butanediylidenedicyclohexyl $]-4,4^{\prime \prime}$-di-methyldi(pent-3-en-1-ol) 17b.-In the same manner as described above, bis-oxirane $\mathbf{1 6 b}(200 \mathrm{mg}, 395 \mu \mathrm{~mol})$ was converted into the alcohol 17b ( $240 \mathrm{mg}, 98 \%$ ), $n_{\mathrm{D}}^{22} 1.5020$ (Found: C, 73.7 ; H, $10.7 \%$ ); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3510 \mathrm{~m},(\mathrm{OH}), 1125 \mathrm{~s}, 1095 \mathrm{~s}, 1060 \mathrm{~m}$ and $1010 \mathrm{~s} ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.80\left(6 \mathrm{H}, \mathrm{m}, 1-, \mathrm{l}^{\prime}-\mathrm{Me}\right), 1.0-1.4$ ( $12 \mathrm{H}, \mathrm{m}, \mathrm{Me}$ of EE group), 1.64 and 1.76 (total $12 \mathrm{H}, 2 \times \mathrm{br} \mathrm{s}$, $\left.\mathrm{Me}_{2} \mathrm{C}=\mathrm{C}\right), 1.0-2.8\left(22 \mathrm{H}, \mathrm{m}, 10 \times \mathrm{CCH}_{2} \mathrm{C}\right.$ and OH$), 3.1-4.7(10$ $\mathrm{H}, \mathrm{m}, 4 \times \mathrm{OCH}, \mathrm{OCH}_{2} \mathrm{Me}$ and OCHO$)$ and $5.40(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}=)$.
$1,1^{\prime \prime}-\left[\left(1 \mathrm{R}^{*}, 1^{\prime} \mathrm{S}^{*}, 2 \mathrm{~S}^{*}, 2^{\prime} \mathrm{R}^{*}, \mathrm{Z}, \mathrm{Z}\right)-2,2^{\prime}\right.$-Bis-(1-ethoxyethoxy)-1,1'-dimethyl-3, $3^{\prime}$-butanediylidenedicyclohexyl $]-4,4^{\prime \prime}$-dimethyldi-(pent-3-en-1-one) 18a.-In the same manner as described for the preparation of dial 15 a , diol $17 \mathrm{a}(213 \mathrm{mg}, 345 \mu \mathrm{~mol})$ was oxidised to the diketone $18 \mathrm{a}\left(190 \mathrm{mg}, 90 \%\right.$ ), $n_{\mathrm{D}}^{21} 1.5010$ (Found: C, $74.0 ; \mathrm{H}, 10.2 . \mathrm{C}_{38} \mathrm{H}_{62} \mathrm{O}_{6}$ requires $\mathrm{C}, 74.23 ; \mathrm{H}, 10.16 \%$ ); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1710 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1130 \mathrm{~s}, 1095 \mathrm{~s}, 1060 \mathrm{~m}, 1020 \mathrm{~s}$ and $935 \mathrm{~m} ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.98\left(6 \mathrm{H}, \mathrm{m}, 1-, 1^{\prime}-\mathrm{Me}\right), 1.0-1.4$ $(12 \mathrm{H}, \mathrm{m}, \mathrm{Me}$ of EE group), 1.63 and 1.76 (total $12 \mathrm{H}, 2 \times \mathrm{br} \mathrm{s}$, $\left.\mathrm{Me}_{2} \mathrm{C}=\mathrm{C}\right), 1.0-2.6\left(20 \mathrm{H}, \mathrm{m}, 10 \times \mathrm{CCH}_{2} \mathrm{C}\right), 3.1-3.8(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 4.3-4.8\left(4 \mathrm{H}, \mathrm{m}, 2-, 2^{\prime}-\mathrm{H}\right.$ and OCHO$)$ and $5.2-5.7$ ( $4 \mathrm{H}, \mathrm{m}, \mathrm{CH}=$ ).
$1,1^{\prime \prime}-\left[\left(1 \mathrm{R}^{*}, 1^{\prime} \mathrm{R}^{*}, 2 \mathrm{~S}^{*}, 2^{\prime} \mathrm{S}^{*}, \mathrm{Z}, \mathbf{Z}\right)-2,2^{\prime}\right.$-Bis-(1-ethoxyethoxy) $-1,1^{\prime}-$ dimethyl-3, $3^{\prime}$-butanediylidenedicyclohexyl]-4,4"-dimethyldi-(pent-3-en-1-one) 18b.-In the same manner as described for the preparation of dial 15 a , diol $\mathbf{1 7 b}(217 \mathrm{mg}, 351 \mu \mathrm{~mol})$ was converted into the diketone $\mathbf{1 8 b}(194 \mathrm{mg}, 90 \%),{n_{\mathrm{D}}^{21}}^{21} .5012$ (Found: C, 74.3; H, 10.1\%); $v_{\max }($ film $) / \mathrm{cm}^{-1} 1710 \mathrm{~s}(\mathrm{C}=\mathrm{O})$, $1130 \mathrm{~s}, 1095 \mathrm{~s}, 1055 \mathrm{~m}, 1020 \mathrm{~s}$ and $935 \mathrm{~m} ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $0.99\left(6 \mathrm{H}, \mathrm{m}, 1-, 1^{\prime}-\mathrm{Me}\right), 1.0-1.4(12 \mathrm{H}, \mathrm{m}, \mathrm{Me}$ of EE group), 1.63 and 1.76 (total $12 \mathrm{H}, 2 \times \mathrm{br} \mathrm{s}, \mathrm{Me}_{2} \mathrm{C}=\mathrm{C}$ ), $1.0-2.6(20 \mathrm{H}, \mathrm{m}$, $\left.10 \times \mathrm{CCH}_{2} \mathrm{C}\right), 3.1-3.8\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Me}\right), 4.3-4.8(4 \mathrm{H}, \mathrm{m}$, $2-, 2^{\prime}-\mathrm{H}$ and OCHO ) and 5.2-5.7 ( $4 \mathrm{H}, \mathrm{m}, \mathrm{CH}=$ ).
$1,1^{\prime \prime}-\left[\left(1 \mathrm{R}^{*}, 1^{\prime} \mathrm{S}^{*}, 2 \mathrm{~S}^{*}, 2^{\prime} \mathrm{R}^{*}, \mathrm{Z}, \mathrm{Z}\right)-2,2^{\prime}\right.$-Dihydroxy-1,1'-dimethyl-3,3'-butanediylidenedicyclohexyl]-4,4"-dimethyldi(pent-3-en-1one) (meso-Limatulone) 1a-Dione 18a ( $179 \mathrm{mg}, 291 \mathrm{mmol}$ ) was dissolved in $\mathrm{AcOH}-\mathrm{MeOH}$-water $\left(2: 1: 1 ; 2 \mathrm{~cm}^{3}\right)$ and the solution was stirred at $25^{\circ} \mathrm{C}$ for 15 h , neutralised with saturated aq. $\mathrm{NaHCO}_{3}$, and extracted with diethyl ether. The extract was washed successively with water, saturated aq. $\mathrm{NaHCO}_{3}$, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed over $\mathrm{SiO}_{2}$ to give meso-limatulone $1 \mathrm{a}\left(67 \mathrm{mg}, 49 \%\right.$ ), $n_{\mathrm{D}}^{19} 1.5199$ (Found: C, $76.6 ; \mathrm{H}$, 9.7. Calc. for $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{4}: \mathrm{C}, 76.55 ; \mathrm{H}, 9.85 \%$ ); $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1}$ 3480s ( OH ), 2930s ( CH ), 2860s ( CH ), 1700s $(\mathrm{C}=\mathrm{O}), 1590 \mathrm{w}$, $1450 \mathrm{~s}(\mathrm{CH}), 1375 \mathrm{~s}(\mathrm{CH}), 1310 \mathrm{~m}, 1210 \mathrm{~m}, 1150 \mathrm{w}, 1105 \mathrm{~m}, 1040 \mathrm{brs}$, $1020 \mathrm{br} \mathrm{s}, 970 \mathrm{~m}, 915 \mathrm{w}, 890 \mathrm{w}, 870 \mathrm{~m}, 790 \mathrm{w}$ and $730 \mathrm{w} ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 0.87\left(6 \mathrm{H}, \mathrm{m}, 1-, 1^{\prime}-\mathrm{Me}\right), 1.33(2 \mathrm{H}$, dt-like, $J 13$ and $\left.4,5-5^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.43\left(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J 13,6-, 6^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 1.40-1.55(2 \mathrm{H}$, $\mathrm{m}, 5-, 5^{\prime}-\mathrm{H}_{\mathrm{eq}}$ ), $1.52(6 \mathrm{H}$, br s, $Z-\mathrm{MeC}=\mathrm{C}), 1.66(6 \mathrm{H}$, br s, $E-$ $\mathrm{MeC}=\mathrm{C}), 1.82\left(2 \mathrm{H}\right.$ br d, $\left.J 13,4-, 4^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 1.96(2 \mathrm{H}, \mathrm{m}$, $=\mathrm{CHCH} \mathrm{HCH} \mathrm{HCH}=), 2.13(2 \mathrm{H},=\mathrm{CHCH} H \mathrm{CH} H \mathrm{CH}=), 2.16$ ( $2 \mathrm{H}, \mathrm{dt}, J 4$ and 13, 6-, $6^{\prime}-\mathrm{H}$ ), 2.49 ( 2 H , brdt, $J 4$ and $13,4-, 4^{\prime}-\mathrm{H}_{\mathrm{ax}}$ ), $2.54(2 \mathrm{H}, \mathrm{brd}, J 3, \mathrm{OH}), 3.16\left(4 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{Me}_{2} \mathrm{C}=\mathrm{CHCH}_{2}\right)$, $4.77(2 \mathrm{H}$, br d, $J 3, \mathrm{CHOH}), 5.24(2 \mathrm{H}$, br t, J 6.5, C=C $\mathrm{C}-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ and $5.59\left(2 \mathrm{H}\right.$, br $\left.\mathrm{t}, J 6.5, \mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 18.1,18.8,22.2,25.7,27.3,27.7,31.0,36.9,52.4,70.0$, 116.3, 126.9, 135.0, 136.8 and 215.7. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 1a was identical with that of the natural product.

Table 1 Fractional atomic co-ordinates with esds in parentheses

|  |  |  |  |
| :--- | :--- | ---: | :--- |
| Atom | $y$ | $z$ |  |
| $\mathrm{Si}(1)$ | $0.8014(4)$ | $-0.4279(4)$ | $0.1729(5)$ |
| $\mathrm{Si}(2)$ | $0.7549(5)$ | $0.2663(4)$ | $0.5694(5)$ |
| $\mathrm{O}(1)$ | $0.7723(7)$ | $-0.4038(6)$ | $0.3202(8)$ |
| $\mathrm{O}(2)$ | $0.8394(7)$ | $-0.1938(6)$ | $0.4291(8)$ |
| $\mathrm{O}(3)$ | $0.7238(8)$ | $0.1910(7)$ | $0.4568(8)$ |
| $\mathrm{O}(4)$ | $0.7345(7)$ | $0.0062(6)$ | $0.3503(7)$ |
| $\mathrm{C}(1)$ | $0.524(1)$ | $-0.0585(8)$ | $0.506(1)$ |
| $\mathrm{C}(2)$ | $0.614(1)$ | $-0.072(1)$ | $0.607(1)$ |
| $\mathrm{C}(3)$ | $0.713(1)$ | $-0.139(1)$ | $0.597(1)$ |
| $\mathrm{C}(4)$ | $0.756(1)$ | $-0.214(1)$ | $0.487(1)$ |
| $\mathrm{C}(5)$ | $0.790(1)$ | $-0.325(1)$ | $0.527(1)$ |
| $\mathrm{C}(6)$ | $0.874(1)$ | $-0.329(1)$ | $0.635(1)$ |
| $\mathrm{C}(7)$ | $0.832(1)$ | $-0.252(1)$ | $0.748(1)$ |
| $\mathrm{C}(8)$ | $0.796(1)$ | $-0.147(1)$ | $0.704(1)$ |
| $\mathrm{C}(9)$ | $0.845(1)$ | $-0.399(1)$ | $0.418(1)$ |
| $\mathrm{C}(10)$ | $0.691(1)$ | $-0.351(1)$ | $0.568(1)$ |
| $\mathrm{C}(11)$ | $0.887(2)$ | $-0.566(1)$ | $0.138(2)$ |
| $\mathrm{C}(12)$ | $0.873(2)$ | $-0.341(2)$ | $0.125(2)$ |
| $\mathrm{C}(13)$ | $0.674(2)$ | $-0.415(2)$ | $0.089(2)$ |
| $\mathrm{C}(14)$ | $0.688(2)$ | $-0.430(2)$ | $-0.050(2)$ |
| $\mathrm{C}(15)$ | $0.623(2)$ | $-0.491(2)$ | $0.128(2)$ |
| $\mathrm{C}(16)$ | $0.596(2)$ | $-0.301(2)$ | $0.132(2)$ |
| $\mathrm{C}(51)$ | $0.527(1)$ | $-0.028(1)$ | $0.069(1)$ |
| $\mathrm{C}(52)$ | $0.648(2)$ | $-0.049(1)$ | $0.051(1)$ |
| $\mathrm{C}(53)$ | $0.717(1)$ | $-0.017(1)$ | $0.130(1)$ |
| $\mathrm{C}(54)$ | $0.682(1)$ | $0.055(1)$ | $0.243(1)$ |
| $\mathrm{C}(55)$ | $0.705(1)$ | $0.154(1)$ | $0.235(1)$ |
| $\mathrm{C}(56)$ | $0.825(2)$ | $0.130(1)$ | $0.211(2)$ |
| $\mathrm{C}(57)$ | $0.869(1)$ | $0.049(2)$ | $0.100(1)$ |
| $\mathrm{C}(58)$ | $0.835(1)$ | $-0.043(1)$ | $0.107(1)$ |
| $\mathrm{C}(59)$ | $0.670(1)$ | $0.227(1)$ | $0.344(2)$ |
| $\mathrm{C}(60)$ | $0.640(1)$ | $0.205(1)$ | $0.118(1)$ |
| $\mathrm{C}(61)$ | $0.852(1)$ | $0.328(1)$ | $0.520(2)$ |
| $\mathrm{C}(62)$ | $0.627(1)$ | $0.372(1)$ | $0.619(2)$ |
| $\mathrm{C}(63)$ | $0.809(2)$ | $0.190(1)$ | $0.694(2)$ |
| $\mathrm{C}(64)$ | $0.721(2)$ | $0.147(2)$ | $0.740(2)$ |
| $\mathrm{C}(65)$ | $0.850(2)$ | $0.249(2)$ | $0.800(2)$ |
| $\mathrm{C}(66)$ | $0.906(2)$ | $0.093(2)$ | $0.640(2)$ |
|  |  |  |  |

Table 2 Bond lengths of non-H atoms with esds in parentheses

| Atom | Distance $(\AA)$ | Atom | Distance $(\AA)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Si}(1)-\mathrm{O}(1)$ | $1.638(9)$ | $\mathrm{Si}(2)-\mathrm{O}(3)$ | $1.644(9)$ |
| $\mathrm{Si}(1)-\mathrm{C}(11)$ | $1.92(2)$ | $\mathrm{Si}(2)-\mathrm{C}(61)$ | $1.86(2)$ |
| $\mathrm{Si}(1)-\mathrm{C}(12)$ | $1.87(2)$ | $\mathrm{Si}(2)-\mathrm{C}(62)$ | $1.91(2)$ |
| $\mathrm{Si}(1)-\mathrm{C}(13)$ | $1.82(2)$ | $\mathrm{Si}(2)-\mathrm{C}(63)$ | $1.79(2)$ |
| $\mathrm{O}(1)-\mathrm{C}(9)$ | $1.39(1)$ | $\mathrm{O}(3)-\mathrm{C}(59)$ | $1.43(2)$ |
| $\mathrm{O}(2)-\mathrm{C}(4)$ | $1.40(1)$ | $\mathrm{O}(4)-\mathrm{C}(54)$ | $1.44(1)$ |
| $\mathrm{C}(1)-\mathrm{C}(1)^{a}$ | $1.58(2)$ | $\mathrm{C}(51)-\mathrm{C}(51)^{b}$ | $1.78(2)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.53(2)$ | $\mathrm{C}(51)-\mathrm{C}(52)$ | $1.52(2)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | $1.34(2)$ | $\mathrm{C}(52)-\mathrm{C}(53)$ | $1.35(2)$ |
| $\mathrm{C}(3)-\mathrm{C}(4)$ | $1.51(2)$ | $\mathrm{C}(53)-\mathrm{C}(54)$ | $1.49(2)$ |
| $\mathrm{C}(3)-\mathrm{C}(8)$ | $1.53(2)$ | $\mathrm{C}(53)-\mathrm{C}(58)$ | $1.50(2)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | $1.57(1)$ | $\mathrm{C}(54)-\mathrm{C}(55)$ | $1.52(2)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)$ | $1.55(2)$ | $\mathrm{C}(55)-\mathrm{C}(56)$ | $1.53(2)$ |
| $\mathrm{C}(5)-\mathrm{C}(9)$ | $1.53(2)$ | $\mathrm{C}(55)-\mathrm{C}(59)$ | $1.47(2)$ |
| $\mathrm{C}(5)-\mathrm{C}(10)$ | $1.54(2)$ | $\mathrm{C}(55)-\mathrm{C}(60)$ | $1.60(2)$ |
| $\mathrm{C}(6)-\mathrm{C}(7)$ | $1.55(2)$ | $\mathrm{C}(56)-\mathrm{C}(57)$ | $1.55(2)$ |
| $\mathrm{C}(6)-\mathrm{C}(8)$ | $1.52(2)$ | $\mathrm{C}(57)-\mathrm{C}(58)$ | $1.50(2)$ |
| $\mathrm{C}(13)-\mathrm{C}(14)$ | $1.513)$ | $\mathrm{C}(63)-\mathrm{C}(64)$ | $1.58(2)$ |
| $\mathrm{C}(13)-\mathrm{C}(15)$ | $1.52(2)$ | $\mathrm{C}(63)-\mathrm{C}(65)$ | $1.52(2)$ |
| $\mathrm{C}(13)-\mathrm{C}(16)$ | $1.63(3)$ | $\mathrm{C}(63)-\mathrm{C}(66)$ | $1.62(3)$ |

${ }^{a}$ Symmetry operators: $1 ;(x, y, z), 2 ;(-x,-y,-z) . \mathrm{ADC}=65602$.
${ }^{b} \mathrm{ADC}=65502$.
$1,1^{\prime \prime}-\left[\left(1 \mathrm{R}^{*}, 1^{\prime} \mathrm{R}^{*}, 2 \mathrm{~S}^{*}, 2^{\prime} \mathrm{S}^{*}, \mathrm{Z}, \mathrm{Z}\right)-2,2^{\prime}\right.$-Dihydroxy-1,1'-dimethyl-3,3'-butanediylidenedicyclohexyl]-4,4"-dimethyldi(pent-3-en-1one) $[( \pm)$-Limatulone $]$ 1b.-In the same manner as described above, compound 18 b ( $151 \mathrm{mg}, 246 \mu \mathrm{~mol}$ ) was converted into

Table 3 Bond angles of non-H atoms with esds in parentheses

| Atom | Angle $(\AA)$ | Atom | Angle $(\AA)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(11)$ | $110.5(7)$ | $\mathrm{O}(3)-\mathrm{Si}(2)-\mathrm{C}(61)$ | $112.2(7)$ |
| $\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(12)$ | $110.8(7)$ | $\mathrm{O}(3)-\mathrm{Si}(2)-\mathrm{C}(62)$ | $109.1(7)$ |
| $\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(13)$ | $106.4(9)$ | $\mathrm{O}(3)-\mathrm{Si}(2)-\mathrm{C}(63)$ | $106.3(7)$ |
| $\mathrm{C}(11)-\mathrm{Si}(1)-\mathrm{C}(12)$ | $111(1)$ | $\mathrm{C}(61)-\mathrm{Si}(2)-\mathrm{C}(62)$ | $106.7(9)$ |
| $\mathrm{C}(11)-\mathrm{Si}(1)-\mathrm{C}(13)$ | $106(1)$ | $\mathrm{C}(61)-\mathrm{Si}(2)-\mathrm{C}(63)$ | $111.7(9)$ |
| $\mathrm{C}(12)-\mathrm{Si}(1)-\mathrm{C}(13)$ | $112(1)$ | $\mathrm{C}(62)-\mathrm{Si}(2)-\mathrm{C}(63)$ | $111(1)$ |
| $\mathrm{Si}(1)-\mathrm{O}(1)-\mathrm{C}(9)$ | $126.3(9)$ | $\mathrm{Si}(2)-\mathrm{O}(3)-\mathrm{C}(59)$ | $122.4(9)$ |
| $\mathrm{C}(1)^{a}-\mathrm{C}(1)-\mathrm{C}(2)$ | $107(1)$ | $\mathrm{C}(51){ }^{b}-\mathrm{C}(51)-\mathrm{C}(52)$ | $101(2)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $125(1)$ | $\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(53)$ | $126(2)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | $126(1)$ | $\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(54)$ | $124(1)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$ | $121(1)$ | $\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(58)$ | $123(2)$ |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)$ | $113(1)$ | $\mathrm{C}(54)-\mathrm{C}(53)-\mathrm{C}(58)$ | $113(1)$ |
| $\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)$ | $112(1)$ | $\mathrm{O}(4)-\mathrm{C}(54)-\mathrm{C}(53)$ | $109(1)$ |
| $\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)$ | $112(1)$ | $\mathrm{O}(4)-\mathrm{C}(54)-\mathrm{C}(55)$ | $111(1)$ |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $110(1)$ | $\mathrm{C}(53)-\mathrm{C}(54)-\mathrm{C}(55)$ | $112(1)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ | $107(1)$ | $\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(56)$ | $108(1)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(9)$ | $109(1)$ | $\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(59)$ | $114(1)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$ | $111(1)$ | $\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(60)$ | $108(1)$ |
| $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(9)$ | $109(1)$ | $\mathrm{C}(56)-\mathrm{C}(55)-\mathrm{C}(59)$ | $112(1)$ |
| $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$ | $111(1)$ | $\mathrm{C}(56)-\mathrm{C}(55)-\mathrm{C}(60)$ | $107(1)$ |
| $\mathrm{C}(9)-\mathrm{C}(5)-\mathrm{C}(10)$ | $111(1)$ | $\mathrm{C}(59)-\mathrm{C}(55)-\mathrm{C}(60)$ | $107(1)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$ | $114(1)$ | $\mathrm{C}(55)-\mathrm{C}(56)-\mathrm{C}(57)$ | $115(1)$ |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ | $108(1)$ | $\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{C}(58)$ | $112(1)$ |
| $\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$ | $112(1)$ | $\mathrm{C}(53)-\mathrm{C}(58)-\mathrm{C}(57)$ | $111(1)$ |
| $\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(5)$ | $112(1)$ | $\mathrm{O}(3)-\mathrm{C}(59)-\mathrm{C}(55)$ | $113(1)$ |
| $\mathrm{Si}(1)-\mathrm{C}(13)-\mathrm{C}(14)$ | $112(2)$ | $\mathrm{Si}(2)-\mathrm{C}(63)-\mathrm{C}(64)$ | $110(1)$ |
| $\mathrm{Si}(1)-\mathrm{C}(13)-\mathrm{C}(15)$ | $109(1)$ | $\mathrm{Si}(2)-\mathrm{C}(63)-\mathrm{C}(65)$ | $111(1)$ |
| $\mathrm{Si}(1)-\mathrm{C}(13)-\mathrm{C}(16)$ | $106(1)$ | $\mathrm{Si}(2)-\mathrm{C}(63)-\mathrm{C}(66)$ | $108(1)$ |
| $\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(15)$ | $109(2)$ | $\mathrm{C}(64)-\mathrm{C}(63)-\mathrm{C}(65)$ | $110(2)$ |
| $\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(16)$ | $111(2)$ | $\mathrm{C}(64)-\mathrm{C}(63)-\mathrm{C}(66)$ | $107(2)$ |
| $\mathrm{C}(15)-\mathrm{C}(13)-\mathrm{C}(16)$ | $109(2)$ | $\mathrm{C}(65)-\mathrm{C}(63)-\mathrm{C}(66)$ | $111(2)$ |
|  |  |  |  |
| $\mathrm{S}(1)$ |  |  |  |

${ }^{a}$ Symmetry operators: $1 ;(x, y, z), 2 ;(-x,-y,-z) . \mathrm{ADC}=65602$.
${ }^{b} \mathrm{ADC}=65502$.
( $\pm$ )-limatulone 1b ( $50 \mathrm{mg}, 43 \%$ ), $n_{\mathrm{D}}^{19} 1.5252$ (Found: C, 76.5; H, $9.7 \%$ ); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3490 \mathrm{~s},(\mathrm{OH}), 2930 \mathrm{~s},(\mathrm{CH}), 2860 \mathrm{~s}(\mathrm{CH})$, 1695s ( $\mathrm{C}=\mathrm{O}$ ), 1450s (CH), 1375s (CH), 1305m, 1210m, 1160w, $1110 \mathrm{~m}, 1045 \mathrm{br} \mathrm{s}, 1020 \mathrm{br} \mathrm{s}, 970 \mathrm{~m}, 945 \mathrm{w}, 920 \mathrm{w}, 895 \mathrm{~m}, 870 \mathrm{~m}$, $790 \mathrm{w}, 735 \mathrm{w}$ and $685 \mathrm{w} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 0.86\left(6 \mathrm{H}, \mathrm{m}, 1-, 1^{\prime}-\right.$ Me), 1.33 ( 2 H , dt-like, $J 13$ and 4, 5-, $\left.5^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.43(2 \mathrm{H}$, br d, $J 15$, $\left.6-, 6^{\prime}-\mathrm{H}_{\text {eq }}\right), 1.40-1.55\left(2 \mathrm{H}, \mathrm{m}, 5-, 5^{\prime}-\mathrm{H}_{\text {eq }}\right), 1.52(6 \mathrm{H}$, br s, $Z-$ $\mathrm{MeC}=\mathrm{C}), 1.66(6 \mathrm{H}$, br s, $E-\mathrm{MeC}=\mathrm{C}), 1.81\left(2 \mathrm{H}\right.$, br d, $J 13,4-, 4^{\prime}-$ $\left.\mathrm{H}_{\mathrm{eq}}\right), 1.93(2 \mathrm{H}, \mathrm{m},=\mathrm{CHCH} \mathrm{HCHCH}=), 2.06(2 \mathrm{H}, \mathrm{m}$, $=\mathrm{CHCHHCHHCH}=), 2.18\left(2 \mathrm{H}, \mathrm{dt}, J 4\right.$ and $\left.13,6-6^{\prime}-\mathrm{H}\right), 2.52$ ( 2 H , br dt, $J 4$ and $13,4-, 4^{\prime}-\mathrm{H}_{\mathrm{ax}}$ ), $2.99(2 \mathrm{H}, \mathrm{d}, J 2, \mathrm{OH}), 3.16(4 \mathrm{H}$, $\left.\mathrm{d}, J 6.5, \mathrm{Me}_{2} \mathrm{C}=\mathrm{CHCH}_{2}\right), 4.69(2 \mathrm{H}$, br s, CHOH$), 5.23(2 \mathrm{H}$, br t, $\left.J 6.5,=\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right)$ and $5.59\left(2 \mathrm{H}\right.$, br t, J 6.5, $\left.\mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 18.1,18.7,22.3,25.7,26.9,27.7,31.0,36.8$, $52.3,70.0,116.4,126.5,134.9,137.2$ and 215.5 . The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 1 b were identical with those of the natural ( $\pm$ )-limatulone. ${ }^{2}$

X-Ray Analysis of Compound 13a.-Crystal data: $\mathrm{C}_{32} \mathrm{H}_{62^{-}}$ $\mathrm{O}_{4} \mathrm{Si}_{2}, M=567.02$, triclinic, $a=13.016(5), b=13.982(8), c=$ $10.85(1) \quad \AA, \quad \alpha=96.06(7), \quad \beta=93.01(6), \quad \gamma=71.96(4)^{\circ}$, $V=1867(4) \AA^{3}$ (by least-squares refinement on diffractometer angles for 25 automatically centred reflections, $\lambda=0.71069 \AA$ ), space group $P \overline{1}$ (No. 2), $Z=2, D_{\mathrm{x}}=1.009 \mathrm{~g} \mathrm{~cm}^{-3} ; F(000)=$ 628 and $\mu(\mathrm{Mo}-\mathrm{K} \alpha)=1.19 \mathrm{~cm}^{-1}$. Rods, $0.4 \times 0.4 \times 0.2 \mathrm{~mm}$.

Data collection and processing. A crystal was mounted on a Rigaku AFC5S diffractometer with graphite-monochromated Mo-K $\alpha$ radiation. Intensity data were collected using the $\omega$ $2 \theta$ scan technique to a maximum $2 \theta$ value of $50^{\circ}$. Of the 5818 independent reflections collected, 1628 reflections with $I>3 \sigma(I)$ were used for the structure determination and refinement. The intensities of three standard reflections, recorded every 150 reflections, showed no significant variation.

Data were corrected for Lorentz and polarisation factors; empirical absorption correction using DIFABS (min. and max. correction factors; $0.70,1.28$ ). ${ }^{12}$

Structure determination and refinement. The structure was solved by direct methods (TEXSAN program). ${ }^{13}$ The positional co-ordinates for all non-hydrogen atoms were refined by fullmatrix least-squares with anisotropic temperature factors. The calculated positions of the hydrogen atoms except for the two hydroxy groups were included for the structure-factor calculations. The final refinement converged to $R=0.091, R_{\mathrm{w}}=$ 0.100 . High temperature factors of the molecules may be the main reason for the low convergency of the refinements. The atomic scattering factors were taken from ref. 14. Tables of atomic co-ordinates, bond lengths and bond angles are given in Tables 1-3. Lists of thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.*

Two independent molecules with centres of symmetry at the respective middle points of the $\mathrm{C}(1)-\mathrm{C}(1)^{\prime}$ bond and the $\mathrm{C}(51)-$ $\mathrm{C}(51)^{\prime}$ bond are located on the crystallographic centre of symmetry at $(0.5,0,0.5)$ and $(0.5,0,0)$, respectively (see Fig. 1).

## Acknowledgements

We thank Prof. D. J. Faulkner of the University of California, San Diego, for supplying the authentic spectra of limatulones la and 1 b .

## References

1 Part 2, H. Watanabe and K. Mori, J. Chem. Soc., Perkin Trans. 1, 1991, 2919.
2 K. F. Albizati, J. R. Pawlik and D. J. Faulkner, J. Org. Chem., 1985, 50, 3428.
3 F. S. De Guzman and F. J. Schmitz, J. Org. Chem., 1991, 56, 55.
4 K. Mori, H. Takikawa, M. Kido, K. F. Albizati and D. J. Faulkner, Nat. Prod. Lett., 1992, 1, 59.
5 J. Lee and J. K. Snyder, J. Org. Chem., 1990, 55, 4995.
6 C. Kaneko, A. Sugimoto, Y. Eguchi, S. Yamada, M. Ishikawa, S. Sasaki and T. Suda, Tetrahedron, 1974, 30, 2701.
7 J. Kollonitsch, O. Fuchs and V. Gábor, Nature, 1955, 175, 346.
8 K. Mori and H. Takikawa, Liebigs Ann. Chem., 1991, 497.
9 G. Stork, P. A. Grieco and M. Gregson, Tetrahedron Lett., 1969, 1393.

10 K. Omura and D. Swern, Tetrahedron, 1978, 34, 1651; A. J. Mancuso, S. L. Huang and D. Swern, J. Org. Chem., 1978, 43, 2480.

11 K. M. Sadhu and D. S. Matteson, Tetrahedron Lett., 1986, 27, 795.

12 D. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.

13 TEXSAN-TEXRAY Structure Analysis Package, Molecular Structure Corporation, The Woodlands, TX, USA, 1985.
14 D. T. Cromer and J. T. Waber, International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, England, 1974, vol. 4, Table 2.2A.

Paper 2/05326H
Received 5th October 1992
Accepted 21st October 1992

